Bei Jiang

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Fast Online $L_0$ Elastic Net Subspace Clustering via A Novel Dictionary Update Strategy 2024 Wentao Qu
Lingchen Kong
Linglong Kong
Bei Jiang
+ PDF Chat The Sufficiency of Off-Policyness and Soft Clipping: PPO Is Still Insufficient according to an Off-Policy Measure 2023 Xing Chen
Dongcui Diao
Hechang Chen
Hengshuai Yao
Haiyin Piao
Zhixiao Sun
Zhiwei Yang
Randy Goebel
Bei Jiang
Yi Chang
+ Scalable inference in functional linear regression with streaming data 2023 Jinhan Xie
Enze Shi
Peijun Sang
Zuofeng Shang
Bei Jiang
Linglong Kong
+ Gaussian Differential Privacy on Riemannian Manifolds 2023 Yangdi Jiang
Xiaotian Chang
Yi Liu
Lei Ding
Linglong Kong
Bei Jiang
+ PDF Chat Sample Average Approximation for Stochastic Optimization with Dependent Data: Performance Guarantees and Tractability 2022 Yafei Wang
Bo Pan
Wei Tu
Peng Liu
Bei Jiang
Chao Gao
Wei Lu
Shangling Jui
Linglong Kong
+ Distributional Reinforcement Learning via Sinkhorn Iterations 2022 Ke Sun
Yingnan Zhao
Yi Liu
Bei Jiang
Linglong Kong
+ The Sufficiency of Off-Policyness and Soft Clipping: PPO is still Insufficient according to an Off-Policy Measure 2022 Xing Chen
Dongcui Diao
Hechang Chen
Hengshuai Yao
Jielong Yang
Haiyin Piao
Zhixiao Sun
Bei Jiang
Yi Chang
+ How Does Value Distribution in Distributional Reinforcement Learning Help Optimization? 2022 Ke Sun
Bei Jiang
Linglong Kong
+ Conformalized Fairness via Quantile Regression 2022 Meichen Liu
Lei Ding
Dengdeng Yu
Wulong Liu
Linglong Kong
Bei Jiang
+ Class Interference of Deep Neural Networks 2022 Dongcui Diao
Hengshuai Yao
Bei Jiang
+ Identification, Amplification and Measurement: A bridge to Gaussian Differential Privacy 2022 Yi Liu
Ke Sun
Linglong Kong
Bei Jiang
+ PDF Chat Sample Average Approximation for Stochastic Optimization with Dependent Data: Performance Guarantees and Tractability 2021 Yafei Wang
Bo Pan
Wei Tu
Peng Liu
Bei Jiang
Chao Gao
Wei Lu
Shangling Jui
Linglong Kong
+ PDF Chat Word Embeddings via Causal Inference: Gender Bias Reducing and Semantic Information Preserving 2021 Lei Ding
Dengdeng Yu
Jinhan Xie
Wenxing Guo
Shenggang Hu
Meichen Liu
Linglong Kong
Hongsheng Dai
Yanchun Bao
Bei Jiang
+ Interpreting Distributional Reinforcement Learning: A Regularization Perspective 2021 Ke Sun
Yingnan Zhao
Yi Liu
Enze Shi
Yafei Wang
Xiaodong Yan
Bei Jiang
Linglong Kong
+ Word Embeddings via Causal Inference: Gender Bias Reducing and Semantic Information Preserving 2021 Lei Ding
Dengdeng Yu
Jinhan Xie
Wenxing Guo
Shenggang Hu
Meichen Liu
Linglong Kong
Hongsheng Dai
Yanchun Bao
Bei Jiang
+ Sample Average Approximation for Stochastic Optimization with Dependent Data: Performance Guarantees and Tractability 2021 Yafei Wang
Bo Pan
Wei Tu
Peng Liu
Bei Jiang
Chao Gao
Wei Lu
Shangling Jui
Linglong Kong
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat A contextual-bandit approach to personalized news article recommendation 2010 Lihong Li
Wei Chu
John Langford
Robert E. Schapire
1
+ PDF Chat Preconditioned temporal difference learning 2008 Hengshuai Yao
Zhiqiang Liu
1
+ FOR LEAST-SQUARES POLICY ITERATION 2016 Devin Schwab
1
+ Parameter Space Noise for Exploration 2017 Matthias Plappert
Rein Houthooft
Prafulla Dhariwal
Szymon Sidor
Richard Y. Chen
Xi Chen
Tamim Asfour
Pieter Abbeel
Marcin Andrychowicz
1
+ Proximal Policy Optimization Algorithms 2017 John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
1
+ Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation 2017 Yuhuai Wu
Elman Mansimov
S. Matthew Liao
Roger Grosse
Jimmy Ba
1
+ PDF Chat Rainbow: Combining Improvements in Deep Reinforcement Learning 2018 Matteo Hessel
Joseph Modayil
Hado van Hasselt
Tom Schaul
Georg Ostrovski
Will Dabney
Dan Horgan
Bilal Piot
Mohammad Gheshlaghi Azar
David Silver
1
+ PDF Chat Distributional Reinforcement Learning With Quantile Regression 2018 Will Dabney
Mark Rowland
Marc G. Bellemare
Rémi Munos
1
+ Addressing Function Approximation Error in Actor-Critic Methods 2018 Scott Fujimoto
Herke van Hoof
David Meger
1
+ PDF Chat Qualitative Measurements of Policy Discrepancy for Return-Based Deep Q-Network 2019 Wenjia Meng
Zheng Qian
Yang Long
Pengfei Li
Gang Pan
1
+ Soft Actor-Critic Algorithms and Applications 2018 Tuomas Haarnoja
Aurick Zhou
Kristian Hartikainen
George Tucker
Sehoon Ha
Jie Tan
Vikash Kumar
Henry Zhu
Abhishek Gupta
Pieter Abbeel
1
+ Trust Region-Guided Proximal Policy Optimization 2019 Yuhui Wang
Hao He
Xiaoyang Tan
Yaozhong Gan
1
+ Truly Proximal Policy Optimization 2019 Yuhui Wang
Hao He
Chao Wen
Xiaoyang Tan
1
+ Deep Learning of Preconditioners for Conjugate Gradient Solvers in Urban Water Related Problems 2019 Johannes Sappl
Laurent Seiler
Matthias Harders
Wolfgang Rauch
1
+ Modelling transition dynamics in MDPs with RKHS embeddings 2012 Steffen Grünewälder
Guy Lever
Luca Baldassarre
Massi Pontil
Arthur Gretton
1
+ Reinforcement Learning with Unsupervised Auxiliary Tasks 2016 Max Jaderberg
Volodymyr Mnih
Wojciech Marian Czarnecki
Tom Schaul
Joel Z. Leibo
David Silver
Koray Kavukcuoglu
1
+ PDF Chat Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems 2012 Sébastien Bubeck
1
+ PDF Chat Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks 2016 Chunyuan Li
Changyou Chen
David Carlson
Lawrence Carin
1
+ Distributional Reinforcement Learning for Efficient Exploration 2019 Borislav Mavrin
Shangtong Zhang
Hengshuai Yao
Linglong Kong
Kaiwen Wu
Yaoliang Yu
1
+ PDF Chat Q($$\lambda $$) with Off-Policy Corrections 2016 Anna Harutyunyan
Marc G. Bellemare
Tom Stepleton
Rémi Munos
1
+ Sample Efficient Actor-Critic with Experience Replay 2016 Ziyu Wang
Victor Bapst
Nicolas Heess
Volodymyr Mnih
Rémi Munos
Koray Kavukcuoglu
Nando de Freitas
1
+ PDF Chat QUOTA: The Quantile Option Architecture for Reinforcement Learning 2019 Shangtong Zhang
Hengshuai Yao
1
+ Safe and Efficient Off-Policy Reinforcement Learning 2016 Rémi Munos
Tom Stepleton
Anna Harutyunyan
Marc G. Bellemare
1
+ Continuous control with deep reinforcement learning 2016 Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
Nicolas Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
1
+ Asynchronous Methods for Deep Reinforcement Learning 2016 Volodymyr Mnih
Adrià Puigdomènech Badia
Mehdi Mirza
Alex Graves
Tim Harley
Timothy Lillicrap
David Silver
Koray Kavukcuoglu
1
+ Better Exploration with Optimistic Actor-Critic 2019 Kamil Ciosek
Quan Vuong
Robert Loftin
Katja Hofmann
1
+ PDF Chat Mastering Complex Control in MOBA Games with Deep Reinforcement Learning 2020 Deheng Ye
Zhao Liu
Mingfei Sun
Bei Shi
Peilin Zhao
Hao Wu
Hongsheng Yu
Shaojie Yang
Xipeng Wu
Qingwei Guo
1
+ PDF Chat Being Optimistic to Be Conservative: Quickly Learning a CVaR Policy 2020 Ramtin Keramati
Christoph Dann
Alex Tamkin
Emma Brunskill
1
+ Mirror Descent Policy Optimization 2020 Manan Tomar
Lior Shani
Yonathan Efroni
Mohammad Ghavamzadeh
1
+ PDF Chat The Arcade Learning Environment: An Evaluation Platform for General Agents 2013 Marc G. Bellemare
Yavar Naddaf
Joel Veness
Michael Bowling
1
+ Non-decreasing Quantile Function Network with Efficient Exploration for Distributional Reinforcement Learning 2021 Fan Zhou
Zhoufan Zhu
Qi Kuang
Liwen Zhang
1
+ You May Not Need Ratio Clipping in PPO 2022 Mingfei Sun
Vitaly Kurin
Guoqing Liu
Sam Devlin
Tao Qin
Katja Hofmann
Shimon Whiteson
1
+ P3O: Policy-on Policy-off Policy Optimization 2019 Rasool Fakoor
Pratik Chaudhari
Alexander J. Smola
1
+ A Distributional Perspective on Reinforcement Learning 2017 Marc G. Bellemare
Will Dabney
Rémi Munos
1
+ OpenAI Gym 2016 Greg Brockman
Vicki Cheung
Ludwig Pettersson
Jonas Schneider
John Schulman
Jie Tang
Wojciech Zaremba
1