+
|
An Overview of Multi-Task Learning in Deep Neural Networks
|
2017
|
Sebastian Ruder
|
5
|
+
PDF
Chat
|
Deep Residual Learning for Image Recognition
|
2016
|
Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
|
4
|
+
|
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
|
2017
|
Xiao Han
Kashif Rasul
Roland Vollgraf
|
3
|
+
|
Pareto Multi-Task Learning
|
2019
|
Xi Lin
HuiâLing Zhen
Zhenhua Li
Qingfu Zhang
Sam Kwong
|
3
|
+
|
Distilling the Knowledge in a Neural Network
|
2015
|
Geoffrey E. Hinton
Oriol Vinyals
Jay B. Dean
|
3
|
+
|
Which Tasks Should Be Learned Together in Multi-task Learning?
|
2019
|
Trevor Standley
Amir Zamir
Dawn Chen
Leonidas Guibas
Jitendra Malik
Silvio Savarese
|
3
|
+
PDF
Chat
|
Multi-task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics
|
2018
|
Roberto Cipolla
Yarin Gal
Alex Kendall
|
3
|
+
|
Small Towers Make Big Differences
|
2020
|
Yuyan Wang
Zhe Zhao
Bo Dai
Christopher Fifty
Dong Lin
Lichan Hong
Ed H.
|
3
|
+
PDF
Chat
|
Gradient Surgery for Multi-Task Learning
|
2020
|
Tianhe Yu
Saurabh Kumar
Abhishek Gupta
Sergey Levine
Karol Hausman
Chelsea Finn
|
3
|
+
|
Neural Collaborative Filtering
|
2017
|
Xiangnan He
Lizi Liao
Hanwang Zhang
Liqiang Nie
Xia Hu
TatâSeng Chua
|
3
|
+
PDF
Chat
|
A Model of Inductive Bias Learning
|
2000
|
J. Baxter
|
3
|
+
PDF
Chat
|
Deep Learning Face Attributes in the Wild
|
2015
|
Ziwei Liu
Ping Luo
Xiaogang Wang
Xiaoou Tang
|
3
|
+
|
Chameleon: Learning Model Initializations Across Tasks With Different Schemas
|
2019
|
Lukas Brinkmeyer
Rafael RĂȘgo Drumond
Randolf Scholz
Josif Grabocka
Lars Schmidt-Thieme
|
2
|
+
|
XLNet: Generalized Autoregressive Pretraining for Language Understanding
|
2019
|
Zhilin Yang
Zihang Dai
Yiming Yang
Jaime Carbonell
Ruslan Salakhutdinov
Quoc V. Le
|
2
|
+
|
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators
|
2020
|
Kevin Clark
Minh-Thang Luong
Quoc V. Le
Christopher D. Manning
|
2
|
+
|
A Broad-Coverage Challenge Corpus for Sentence Understanding through Inference
|
2018
|
Adina Williams
Nikita Nangia
Samuel Bowman
|
2
|
+
|
Attention is All you Need
|
2017
|
Ashish Vaswani
Noam Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan N. Gomez
Ćukasz Kaiser
Illia Polosukhin
|
2
|
+
PDF
Chat
|
Cross-Stitch Networks for Multi-task Learning
|
2016
|
Ishan Misra
Abhinav Shrivastava
Abhinav Gupta
Martial Hebert
|
2
|
+
|
Synthesizer: Rethinking Self-Attention in Transformer Models
|
2020
|
Yi Tay
Dara Bahri
Donald Metzler
Da-Cheng Juan
Zhe Zhao
Che Zheng
|
2
|
+
|
Mitigating Unwanted Biases with Adversarial Learning
|
2018
|
Brian Hu Zhang
Blake Lemoine
Margaret Mitchell
|
2
|
+
PDF
Chat
|
Top-K Off-Policy Correction for a REINFORCE Recommender System
|
2019
|
Minmin Chen
Alex Beutel
Paul Covington
Sagar Jain
Francois Belletti
Ed H.
|
2
|
+
|
On Fairness and Calibration
|
2017
|
Geoff Pleiss
Manish Raghavan
Felix Wu
Jon Kleinberg
Kilian Q. Weinberger
|
2
|
+
|
Ranking via Sinkhorn Propagation
|
2011
|
Ryan P. Adams
Richard S. Zemel
|
2
|
+
PDF
Chat
|
Exploring author gender in book rating and recommendation
|
2018
|
Michael D. Ekstrand
Mucun Tian
Mohammed R. Imran Kazi
Hoda Mehrpouyan
Daniel Kluver
|
2
|
+
|
Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation
|
2013
|
Yoshua Bengio
Nicholas LĂ©onard
Aaron Courville
|
2
|
+
|
Dynamic Routing Between Capsules
|
2017
|
Sara Sabour
Nicholas Frosst
Geoffrey E. Hinton
|
2
|
+
|
RoBERTa: A Robustly Optimized BERT Pretraining Approach
|
2019
|
Yinhan Liu
Myle Ott
Naman Goyal
Jingfei Du
Mandar Joshi
Danqi Chen
Omer Levy
Mike Lewis
Luke Zettlemoyer
Veselin Stoyanov
|
2
|
+
PDF
Chat
|
A Modulation Module for Multi-task Learning with Applications in Image Retrieval
|
2018
|
Xiangyun Zhao
Haoxiang Li
Xiaohui Shen
Xiaodan Liang
Ying Wu
|
2
|
+
|
Fairness-Aware Tensor-Based Recommendation
|
2018
|
Ziwei Zhu
Xia Hu
James Caverlee
|
2
|
+
|
Regularizing Deep Multi-Task Networks using Orthogonal Gradients
|
2019
|
Mihai Ćuteu
Yike Guo
|
2
|
+
|
Know What You Donât Know: Unanswerable Questions for SQuAD
|
2018
|
Pranav Rajpurkar
Robin Jia
Percy Liang
|
2
|
+
|
Fairness of Exposure in Rankings
|
2018
|
Ashudeep Singh
Thorsten Joachims
|
2
|
+
|
A Survey on Multi-Task Learning
|
2017
|
Yu Zhang
Qiang Yang
|
2
|
+
|
GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks
|
2017
|
Zhao Chen
Vijay Badrinarayanan
ChenâYu Lee
Andrew Rabinovich
|
2
|
+
|
Learning Adversarially Fair and Transferable Representations
|
2018
|
David Madras
Elliot Creager
Toniann Pitassi
Richard S. Zemel
|
2
|
+
|
Trace Norm Regularised Deep Multi-Task Learning
|
2016
|
Yongxin Yang
Timothy M. Hospedales
|
2
|
+
|
Recasting Gradient-Based Meta-Learning as Hierarchical Bayes
|
2018
|
Erin Grant
Chelsea Finn
Sergey Levine
Trevor Darrell
Thomas L. Griffiths
|
2
|
+
|
Large scale distributed neural network training through online distillation
|
2018
|
Rohan Anil
Gabriel Pereyra
Alexandre Passos
RĂłbert OrmĂĄndi
George E. Dahl
Geoffrey E. Hinton
|
2
|
+
|
SQuAD: 100,000+ Questions for Machine Comprehension of Text
|
2016
|
Pranav Rajpurkar
Jian Zhang
Konstantin Lopyrev
Percy Liang
|
2
|
+
|
Unbiased Learning-to-Rank with Biased Feedback
|
2017
|
Thorsten Joachims
Adith Swaminathan
Tobias Schnabel
|
2
|
+
PDF
Chat
|
Assessing calibration of prognostic risk scores
|
2013
|
Cynthia S. Crowson
Elizabeth J. Atkinson
Terry M. Therneau
|
2
|
+
|
Equality of Opportunity in Supervised Learning
|
2016
|
Moritz Hardt
Eric Price
Nathan Srebro
|
2
|
+
PDF
Chat
|
Fairness through awareness
|
2012
|
Cynthia Dwork
Moritz Hardt
Toniann Pitassi
Omer Reingold
Richard S. Zemel
|
2
|
+
PDF
Chat
|
Fully-Adaptive Feature Sharing in Multi-Task Networks with Applications in Person Attribute Classification
|
2017
|
Yongxi Lu
Abhishek Kumar
Shuangfei Zhai
Yu Cheng
Tara Javidi
Rogério Feris
|
2
|
+
|
The Information Complexity of Learning Tasks, their Structure and their Distance
|
2019
|
Alessandro Achille
Giovanni Paolini
Glen Bigan Mbeng
Stefano Soatto
|
2
|
+
|
Unbiased Comparative Evaluation of Ranking Functions
|
2016
|
Tobias Schnabel
Adith Swaminathan
Peter I. Frazier
Thorsten Joachims
|
2
|
+
|
On conditional parity as a notion of non-discrimination in machine learning
|
2017
|
Yaâacov Ritov
Yuekai Sun
Ruofei Zhao
|
2
|
+
|
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
|
2017
|
Chelsea Finn
Pieter Abbeel
Sergey Levine
|
2
|
+
PDF
Chat
|
FA*IR
|
2017
|
Meike Zehlike
Francesco Bonchi
Carlos Castillo
Sara Hajian
M. Megahed
Ricardo BaezaâYates
|
2
|
+
|
On First-Order Meta-Learning Algorithms.
|
2018
|
Alex Nichol
Joshua Achiam
John Schulman
|
2
|