Zheng Qian

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat ChatGPT for shaping the future of dentistry: the potential of multi-modal large language model 2023 Hanyao Huang
Ou Zheng
Dongdong Wang
Jiayi Yin
Zijin Wang
Shengxuan Ding
Heng Yin
Chuan Xu
Renjie Yang
Zheng Qian
+ PDF Chat Numerical and experimental investigation of electromagnetic cold crucible used for emissivity measurement of molten material 2023 Kun Yu
Zheng Qian
Longfei Li
Gangquan Wang
Kaihua Zhang
Yufang Liu
Xiaohu Wu
+ ChatGPT for Shaping the Future of Dentistry: The Potential of Multi-Modal Large Language Model 2023 Hanyao Huang
Ou Zheng
Dongdong Wang
Jiayi Yin
Zijin Wang
Shengxuan Ding
Heng Yin
Chuan Xu
Renjie Yang
Zheng Qian
+ Fault diagnosis for PV arrays considering dust impact based on transformed graphical feature of characteristic curves and convolutional neural network with CBAM modules 2023 Jiaqi Qu
Lu Wei
Qiang Sun
Hamidreza Zareipour
Zheng Qian
+ Controlling Type Confounding in Ad Hoc Teamwork with Instance-wise Teammate Feedback Rectification 2023 Xing Dong
Pengjie Gu
Zheng Qian
Xinrun Wang
Shanqi Liu
Longtao Zheng
Bo An
Gang Pan
+ PDF Chat Policy Optimization with Stochastic Mirror Descent 2022 Yang Long
Yu Zhang
Gang Zheng
Zheng Qian
Pengfei Li
Jianhang Huang
Gang Pan
+ TinyLight: Adaptive Traffic Signal Control on Devices with Extremely Limited Resources 2022 Xing Dong
Zheng Qian
Qianhui Liu
Gang Pan
+ PDF Chat Sample Complexity of Policy Gradient Finding Second-Order Stationary Points 2021 Yang Long
Zheng Qian
Gang Pan
+ PDF Chat On Convergence of Gradient Expected Sarsa(位) 2021 Yang Long
Gang Zheng
Yu Zhang
Zheng Qian
Pengfei Li
Gang Pan
+ On Convergence of Gradient Expected Sarsa($位$) 2020 Yang Long
Gang Zheng
Yu Zhang
Zheng Qian
Pengfei Li
Gang Pan
+ PDF Chat Qualitative Measurements of Policy Discrepancy for Return-Based Deep Q-Network 2019 Wenjia Meng
Zheng Qian
Yang Long
Pengfei Li
Gang Pan
+ Gradient Q$(蟽, 位)$: A Unified Algorithm with Function Approximation for Reinforcement Learning 2019 Yang Long
Yu Zhang
Zheng Qian
Pengfei Li
Gang Pan
+ Policy Optimization with Stochastic Mirror Descent 2019 Long Yang
Yu Zhang
Gang Zheng
Zheng Qian
Pengfei Li
Jianhang Huang
Jun Wen
Gang Pan
+ A Unified Approach for Multi-step Temporal-Difference Learning with Eligibility Traces in Reinforcement Learning 2018 Yang Long
Minhao Shi
Zheng Qian
Wenjia Meng
Gang Pan
+ A Unified Approach for Multi-step Temporal-Difference Learning with Eligibility Traces in Reinforcement Learning 2018 Yang Long
Minhao Shi
Zheng Qian
Wenjia Meng
Gang Pan
+ Exploiting Local Feature Patterns for Unsupervised Domain Adaptation 2018 Jun Wen
Risheng Liu
Nenggan Zheng
Zheng Qian
Zhefeng Gong
Junsong Yuan
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Finite-Sample Analysis of Proximal Gradient TD Algorithms 2020 Bo Liu
Ji Liu
Mohammad Ghavamzadeh
Sridhar Mahadevan
Marek Petrik
3
+ A Unified Approach for Multi-step Temporal-Difference Learning with Eligibility Traces in Reinforcement Learning 2018 Yang Long
Minhao Shi
Zheng Qian
Wenjia Meng
Gang Pan
3
+ Robust Stochastic Approximation Approach to Stochastic Programming 2009 Arkadi Nemirovski
Anatoli Juditsky
Guanghui Lan
Alexander Shapiro
3
+ PDF Chat Multi-Step Reinforcement Learning: A Unifying Algorithm 2018 Kristopher De Asis
Juan Hernandez-Garcia
Gerhard Holland
Richard S. Sutton
2
+ SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path-Integrated Differential Estimator 2018 Cong Fang
Chris Junchi Li
Zhouchen Lin
Tong Zhang
2
+ SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient 2017 Lam M. Nguyen
Jie Liu
Katya Scheinberg
Martin Tak谩膷
2
+ Sample Efficient Policy Gradient Methods with Recursive Variance Reduction 2019 Pan Xu
Felicia Gao
Quanquan Gu
2
+ PDF Chat Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization 2014 Saeed Ghadimi
Guanghui Lan
Hongchao Zhang
2
+ PDF Chat A Tale of Two-Timescale Reinforcement Learning with the Tightest Finite-Time Bound 2020 Gal Dalal
Bal谩zs Sz枚r茅nyi
Gugan Thoppe
2
+ Linear Stochastic Approximation: How Far Does Constant Step-Size and Iterate Averaging Go? 2018 Chandrashekar Lakshminarayanan
Csaba Szepesv谩ri
2
+ Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor 2018 Tuomas Haarnoja
Aurick Zhou
Pieter Abbeel
Sergey Levine
2
+ PDF Chat Temporal Difference Methods for General Projected Equations 2011 Dimitri P. Bertsekas
2
+ PDF Chat Stochastic Variance-Reduced Policy Gradient 2018 Matteo Papini
Damiano Binaghi
Giuseppe Canonaco
Matteo Pirotta
Marcello Restelli
2
+ Hessian Aided Policy Gradient 2019 Zebang Shen
Alejandro Ribeiro
Hamed Hassani
Hui Qian
Chao Mi
2
+ High-Dimensional Continuous Control Using Generalized Advantage Estimation 2015 John Schulman
Philipp Moritz
Sergey Levine
Michael I. Jordan
Pieter Abbeel
2
+ Stochastic Variance Reduction Methods for Policy Evaluation 2017 Simon S. Du
Jianshu Chen
Lihong Li
Lin Xiao
Dengyong Zhou
2
+ Benchmarking Deep Reinforcement Learning for Continuous Control 2016 Yan Duan
Xi Chen
Rein Houthooft
John Schulman
Pieter Abbeel
2
+ Continuous control with deep reinforcement learning 2016 Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
Nicolas Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
2
+ An Improved Convergence Analysis of Stochastic Variance-Reduced Policy Gradient 2019 Pan Xu
Felicia Gao
Quanquan Gu
2
+ Stochastic Variance-Reduced Policy Gradient 2018 Matteo Papini
Damiano Binaghi
Giuseppe Canonaco
Matteo Pirotta
Marcello Restelli
2
+ Q-PrOP: Sample-efficient policy gradient with an off-policy critic 2017 Shixiang Gu
Timothy Lillicrap
Zoubin Ghahramani
Richard E. Turner
Sergey Levine
2
+ Representations for Stable Off-Policy Reinforcement Learning 2020 Dibya Ghosh
Marc G. Bellemare
2
+ Linear Convergence of the Primal-Dual Gradient Method for Convex-Concave Saddle Point Problems without Strong Convexity 2018 Simon S. Du
Wei Hu
2
+ Safe and Efficient Off-Policy Reinforcement Learning 2016 R茅mi Munos
Tom Stepleton
Anna Harutyunyan
Marc G. Bellemare
2
+ PDF Chat Finite Sample Analyses for TD(0) With Function Approximation 2018 Gal Dalal
Bal谩zs Sz枚r茅nyi
Gugan Thoppe
Shie Mannor
2
+ The optimal reward baseline for gradient-based reinforcement learning 2001 Lex Weaver
Nigel Tao
1
+ Gradient Descent Can Take Exponential Time to Escape Saddle Points 2017 Simon S. Du
Chi Jin
Jason D. Lee
Michael I. Jordan
Barnab谩s P贸czos
Aarti Singh
1
+ PDF Chat ActionVLAD: Learning Spatio-Temporal Aggregation for Action Classification 2017 Rohit Girdhar
Deva Ramanan
Abhinav Gupta
Josef 艩ivic
Bryan Russell
1
+ Stochastic Recursive Gradient Algorithm for Nonconvex Optimization 2017 Lam M. Nguyen
Jie Liu
Katya Scheinberg
Martin Tak谩膷
1
+ Proximal Policy Optimization Algorithms 2017 John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
1
+ Deep reinforcement learning with double Q-Learning 2016 Hado van Hasselt
Arthur Guez
David Silver
1
+ Cubic regularization of Newton method and its global performance 2006 Yurii Nesterov
B. T. Polyak
1
+ How to Escape Saddle Points Efficiently 2017 Chi Jin
Rong Ge
Praneeth Netrapalli
Sham M. Kakade
Michael I. Jordan
1
+ Domain Adaptation for Visual Applications: A Comprehensive Survey 2017 Gabriela Csurka
1
+ Variance Reduction for Reinforcement Learning in Input-Driven Environments 2018 Hongzi Mao
Shaileshh Bojja Venkatakrishnan
Malte Schwarzkopf
Mohammad Alizadeh
1
+ FOR LEAST-SQUARES POLICY ITERATION 2016 Devin Schwab
1
+ Conditional Generative Adversarial Nets 2014 Mehdi Mirza
Simon Osindero
1
+ Escaping From Saddle Points --- Online Stochastic Gradient for Tensor Decomposition 2015 Rong Ge
Furong Huang
Chi Jin
Yuan Yang
1
+ Finding Local Minima via Stochastic Nested Variance Reduction 2018 Dongruo Zhou
Pan Xu
Quanquan Gu
1
+ On the Convergence Rate of Stochastic Mirror Descent for Nonsmooth Nonconvex Optimization 2018 Siqi Zhang
Niao He
1
+ Combining policy gradient and Q-learning 2016 Brendan O鈥橠onoghue
R茅mi Munos
Koray Kavukcuoglu
Volodymyr Mnih
1
+ Convex Analysis and Monotone Operator Theory in Hilbert Spaces 2017 Heinz H. Bauschke
Patrick L. Combettes
1
+ SBEED: Convergent Reinforcement Learning with Nonlinear Function Approximation 2017 Bo Dai
Albert Shaw
Lihong Li
Lin Xiao
Niao He
Zhen Liu
Jianshu Chen
Le Song
1
+ Stochastic Nested Variance Reduction for Nonconvex Optimization 2018 Dongruo Zhou
Pan Xu
Quanquan Gu
1
+ Neural Architecture Search with Reinforcement Learning 2016 Barret Zoph
Quoc V. Le
1
+ SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path Integrated Differential Estimator 2018 Cong Fang
Chris Junchi Li
Zhouchen Lin
Tong Zhang
1
+ Escaping Saddles with Stochastic Gradients 2018 Hadi Daneshmand
Jonas K枚hler
Aur茅lien Lucchi
Thomas Hofmann
1
+ PDF Chat Lessons from Natural Language Inference in the Clinical Domain 2018 Alexey Romanov
Chaitanya Shivade
1
+ Stochastic Composite Mirror Descent: Optimal Bounds with High Probabilities 2018 Yunwen Lei
Ke Tang
1
+ A Unified Approach for Multi-step Temporal-Difference Learning with Eligibility Traces in Reinforcement Learning 2018 Yang Long
Minhao Shi
Zheng Qian
Wenjia Meng
Gang Pan
1