Young S Kim

Follow

Generating author description...

All published works
Action Title Year Authors
+ Quarks and partons in the Lorentz-covariant world 2021 Sibel Başkal
Young S Kim
Marilyn E. Noz
+ Two-by-two representations of Wigner’s little groups 2021 Sibel Başkal
Young S Kim
Marilyn E. Noz
+ Wigner’s little groups for internal space–time symmetries 2021 Sibel Başkal
Young S Kim
Marilyn E. Noz
+ Lorentz group and its representations 2021 Sibel Başkal
Young S Kim
Marilyn E. Noz
+ Physics of the Lorentz Group (Second Edition) 2021 Sibel Başkal
Young S Kim
Marilyn E. Noz
+ Wigner functions and their symmetries 2021 Sibel Başkal
Young S Kim
Marilyn E. Noz
+ Poincaré sphere 2021 Sibel Başkal
Young S Kim
Marilyn E. Noz
+ Integration of Dirac's Efforts to construct Lorentz-covariant Quantum Mechanics 2020 Young S Kim
Marilyn E. Noz
+ Einstein's E = mc^2 derivable from Heisenberg's Uncertainty Relations 2019 Sibel Başkal
Young S Kim
Marilyn E. Noz
+ PDF Chat Einstein’s E = mc2 Derivable from Heisenberg’s Uncertainty Relations 2019 Sibel Başkal
Young S Kim
Marilyn E. Noz
+ Wigner functions 2019 Sibel Başkal
Young S Kim
Marilyn E. Noz
+ Lorentz group and its representations 2019 Sibel Başkal
Young S Kim
Marilyn E. Noz
+ PDF Chat Poincaré Symmetry from Heisenberg’s Uncertainty Relations 2019 Sibel Başkal
Young S Kim
Marilyn E. Noz
+ Einstein's E = mc^2 derivable from Heisenberg's Uncertainty Relations 2019 Sibel Başkal
Young S Kim
Marilyn E. Noz
+ Photons in the Quantum World 2017 Sibel Başkal
Young S Kim
Marilyn E. Noz
+ Photons in the Quantum World 2017 Sibel Başkal
Young S Kim
Marilyn E. Noz
+ PDF Chat Lorentz group in ray optics 2015 Sibel Başkal
Young S Kim
Marilyn E. Noz
+ Coupled oscillators and squeezed states of light 2015 Sibel Başkal
Young S Kim
Marilyn E. Noz
+ The Lorentz group and its representations 2015 Sibel Başkal
Young S Kim
Marilyn E. Noz
+ Wigner's little groups for internal space–time symmetries 2015 Sibel Başkal
Young S Kim
Marilyn E. Noz
+ Physics of the Lorentz Group 2015 Sibel Başkal
Young S Kim
Marilyn E. Noz
+ Two-by-two representations of Wigner’s little groups 2015 Sibel Başkal
Young S Kim
Marilyn E. Noz
+ Quarks and partons in the Lorentz-covariant world 2015 Sibel Başkal
Young S Kim
Marilyn E. Noz
+ Lorentz-covariant harmonic oscillators 2015 Sibel Başkal
Young S Kim
Marilyn E. Noz
+ Lorentz Coherence and the Proton Form Factor 2015 Young S Kim
+ Entropy and Temperature from Entangled Space and Time 2014 Young S Kim
Marilyn E. Noz
+ Entropy and Temperature from Entangled Space and Time 2014 Young S Kim
Marilyn E. Noz
+ Symmetries shared by the Poincaré Group and the Poincaré Sphere 2013 Young S Kim
Marilyn E. Noz
+ Symmetries Shared by the Poincar´ e Group and the Poincar´ e Sphere 2013 Young S Kim
Marilyn E. Noz
+ Symmetries shared by the Poincaré Group and the Poincaré Sphere 2013 Young S Kim
Marilyn E. Noz
+ PDF Chat Dirac Matrices and Feynman’s Rest of the Universe 2012 Young S Kim
Marilyn E. Noz
+ Dirac Matrices and Feynman's Rest of the Universe 2012 Young S Kim
Marilyn E. Noz
+ Dirac Matrices and Feynman's Rest of the Universe 2012 Young S Kim
Marilyn E. Noz
+ PDF Chat Lorentz Harmonics, Squeeze Harmonics and Their Physical Applications 2011 Young S Kim
Marilyn E. Noz
+ Squeeze transformation and optics after Einstein 2005 Young S Kim
Margarita A. Man’ko
Michel Planat
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ A Remarkable Representation of the 3 + 2 de Sitter Group 1963 P. A. M. Dirac
8
+ PDF Chat <i>O</i>(3,3)-like symmetries of coupled harmonic oscillators 1995 D. Han
Y. S. Kim
Marilyn E. Noz
5
+ Unitary representations of the Lorentz group 1945 P. A. M. Dirac
5
+ PDF Chat On the Contraction of Groups and Their Representations 1953 Erdal İnönü
E. P. Wigner
4
+ Theory and Applications of the Poincaré Group 2024 Sibel Başkal
Young Suh Kim
Marilyn E. Noz
4
+ Relativistic oscillator models of elementary particles 1965 V. L. Ginzburg
V. I. Man’ko
4
+ PDF Chat Poincaré Symmetry from Heisenberg’s Uncertainty Relations 2019 Sibel Başkal
Young S Kim
Marilyn E. Noz
3
+ <i>Lie Groups, Lie Algebras, and Some of Their Applications</i> 1974 Robert Gilmore
Róbert Hermann
3
+ PDF Chat Entanglement of Formation for Symmetric Gaussian States 2003 G. Giedke
Michael M. Wolf
O. Krüger
Reinhard F. Werner
J. I. Cirac
3
+ PDF Chat Study of lattice QCD form factors using the extended Gari-Krümpelmann model 2005 Hrayr H. Matevosyan
A. W. Thomas
Gerald A. Miller
3
+ Theory and Applications of the Poincaré Group 1986 Y. S. Kim
Marilyn E. Noz
2
+ PDF Chat Lorentz Group in Ray and Polarization Optics 2018 S. Baskal
Y. S. Kim
2
+ PDF Chat The Question of Simultaneity in Relativity and Quantum Mechanics 2006 Y. S. Kim
Marilyn E. Noz
2
+ PDF Chat On Nucleon Electromagnetic Form Factors 2005 Reinhard Alkofer
A. Höll
Markus Klöker
A. Krassnigg
Craig D. Roberts
2
+ The Dirac gamma matrices as ‘‘relics’’ of a hidden symmetry?: As fundamental representations of the algebra sp(4,R) 1995 Dae-Gyu Lee
2
+ PDF Chat Coupled oscillators, entangled oscillators, and Lorentz-covariant harmonic oscillators 2005 Y S Kim
Marilyn E. Noz
2
+ Structure and Mass Spectrum of Elementary Particles. I. General Considerations 1953 Hideki Yukawa
2
+ Representations of the Rotation and Lorentz Groups and Their Applications. 1966 Róbert Hermann
I. M. Gel'fand
R. A. Minlos
Z. Ya. Shapiro
1
+ PDF Chat Feynman’s decoherence 2003 Y. S. Kim
Marilyn E. Noz
1
+ PDF Chat Artificial relativistic molecules 2020 Jae Whan Park
Hyo Sung Kim
Thomas Brumme
Thomas Heine
Han Woong Yeom
1
+ PDF Chat Entangled Harmonic Oscillators and Space-Time Entanglement 2016 Sibel Başkal
Young Kim
Marilyn E. Noz
1
+ PDF Chat Do Small-Mass Neutrinos Participate in Gauge Transformations? 2016 Y.S. Kim
Gerald Q. Maguire
Marilyn E. Noz
1
+ Unitary representations of the Lorentz group 1988 P. A. M. Dirac
1
+ Physics of the Lorentz Group 2015 Sibel Başkal
Young S Kim
Marilyn E. Noz
1
+ Structure and Mass Spectrum of Elementary particles. I. General Considerations 1988 Hideki Yukawa
1
+ Density Matrix Theory and Applications 1981 K Blum
1
+ General three-spinor wave functions and the relativistic quark model 1975 1
+ Symplectic Techniques in Physics 1984 Victor Guillemin
Shlomo Sternberg
1
+ Relativistic theory of particles with arbitrary intrinsic angular momentum 2007 E. Majorana
1
+ PDF Chat Stokes parameters as a Minkowskian four-vector 1997 D. Han
Y. S. Kim
Marilyn E. Noz
1
+ Coupled oscillators and Feynman's three papers 2007 Y S Kim
1
+ PDF Chat Does Lorentz Boost Destroy Coherence? 1998 Y. S. Kim
1
+ Irreducible Unitary Representations of the Lorentz Group 1947 V. Bargmann
1
+ PDF Chat Jones-matrix formalism as a representation of the Lorentz group 1997 D. Han
Y. S. Kim
Marilyn E. Noz
1
+ The Conditions for a Quantum Field Theory to be Relativistic 1962 P. A. M. Dirac
1
+ PDF Chat One analytic form for four branches of the<i>ABCD</i>matrix 2010 Sibel Başkal
Y. S. Kim
1
+ Vector parametrization of the Lorentz group and relativistic kinematics 1970 F. I. Fedorov
1
+ Poincaré Sphere and Decoherence Problems 2012 Y. S. Kim
1
+ Linear representations of the Lorentz group 1957 M. A. Naĭmark
1
+ Neutrino Mass and New Physics 2006 R. N. Mohapatra
A. Yu. Smirnov
1
+ PDF Chat Relativistic harmonic oscillator revisited 2009 Itzhak Bars
1
+ Feynman Rules for Any Spin. II. Massless Particles 1988 Steven Weinberg
1
+ Linear Representation of the Lorentz Group. 1967 Wilhelm Magnus
M. A. Naĭmark
1