Pengfei Chen

Follow

Generating author description...

Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Using Trusted Data to Train Deep Networks on Labels Corrupted by Severe Noise 2018 Dan Hendrycks
Mantas Mazeika
Duncan Wilson
Kevin Gimpel
2
+ Are Anchor Points Really Indispensable in Label-Noise Learning? 2019 Xiaobo Xia
Tongliang Liu
Nannan Wang
Bo Han
Gong Chen
Gang Niu
Masashi Sugiyama
2
+ SELF: Learning to Filter Noisy Labels with Self-Ensembling 2019 Duc Tam Nguyen
Chaithanya Kumar Mummadi
Thi Phuong Nhung Ngo
Thi Nguyen
Laura Beggel
Thomas Brox
2
+ How does Disagreement Help Generalization against Label Corruption? 2019 Xingrui Yu
Bo Han
Jiangchao Yao
Gang Niu
Ivor W. Tsang
Masashi Sugiyama
2
+ DivideMix: Learning with Noisy Labels as Semi-supervised Learning 2020 Junnan Li
Steven C. H. Hoi
Richard Socher
2
+ Unsupervised Label Noise Modeling and Loss Correction 2019 Eric Arazo
Diego Ortego
Paul Albert
Noel E. O’Connor
Kevin McGuinness
2
+ Generalized cross entropy loss for training deep neural networks with noisy labels 2018 Zhilu Zhang
Mert R. Sabuncu
2
+ DivideMix: Learning with Noisy Labels as Semi-supervised Learning 2020 Junnan Li
Richard Socher
Steven C. H. Hoi
2
+ A Meta Approach to Defend Noisy Labels by the Manifold Regularizer PSDR 2019 Pengfei Chen
Benben Liao
Guangyong Chen
Shengyu Zhang
2
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
2
+ Parts-dependent Label Noise: Towards Instance-dependent Label Noise 2020 Xiaobo Xia
Tongliang Liu
Bo Han
Nannan Wang
Mingming Gong
Haifeng Liu
Gang Niu
Dacheng Tao
Masashi Sugiyama
2
+ PDF Chat Joint Optimization Framework for Learning with Noisy Labels 2018 Daiki Tanaka
Daiki Ikami
Toshihiko Yamasaki
Kiyoharu Aizawa
2
+ PDF Chat Making Deep Neural Networks Robust to Label Noise: A Loss Correction Approach 2017 Giorgio Patrini
Alessandro Rozza
Aditya Krishna Menon
Richard Nock
Lizhen Qu
2
+ Part-dependent Label Noise: Towards Instance-dependent Label Noise 2020 Xiaobo Xia
Tongliang Liu
Bo Han
Nannan Wang
Mingming Gong
Haifeng Liu
Gang Niu
Dacheng Tao
Masashi Sugiyama
2
+ Understanding deep learning requires rethinking generalization 2016 Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
2
+ Distilling the Knowledge in a Neural Network 2015 Geoffrey E. Hinton
Oriol Vinyals
Jay B. Dean
2
+ Distillation $\approx$ Early Stopping? Harvesting Dark Knowledge Utilizing Anisotropic Information Retrieval For Overparameterized Neural Network 2019 Bin Dong
Jikai Hou
Yiping Lu
Zhihua Zhang
1
+ Confidence Scores Make Instance-dependent Label-noise Learning Possible 2020 Antonin Berthon
Bo Han
Gang Niu
Tongliang Liu
Masashi Sugiyama
1
+ PDF Chat On the Efficacy of Knowledge Distillation 2019 Jang Hyun Cho
Bharath Hariharan
1
+ Error-Bounded Correction of Noisy Labels 2020 Songzhu Zheng
Pengxiang Wu
Aman Goswami
Mayank Goswami
Dimitris Metaxas
Chao Chen
1
+ Learning with Bounded Instance- and Label-dependent Label Noise 2017 Jiacheng Cheng
Tongliang Liu
Kotagiri Ramamohanarao
Dacheng Tao
1
+ Principal Component Analysis 2005 Ian T. Jolliffe
1
+ Rethinking Importance Weighting for Deep Learning under Distribution Shift 2020 Tongtong Fang
Nan Lu
Gang Niu
Masashi Sugiyama
1
+ Matrix correlation 1984 J. O. Ramsay
Jos ten Berge
George P. H. Styan
1
+ PDF Chat Making risk minimization tolerant to label noise 2015 Aritra Ghosh
Naresh Manwani
P. S. Sastry
1
+ PDF Chat Convexity, Classification, and Risk Bounds 2006 Peter L. Bartlett
Michael I. Jordan
Jon McAuliffe
1
+ PDF Chat Entropy production in a cell and reversal of entropy flow as an anticancer therapy 2008 Liaofu Luo
1
+ PDF Chat On Hoeffding’s inequalities 2004 V. Bentkus
1
+ Molecular dynamics simulation of a thin water layer evaporation and evaporation coefficient 2005 Tzung Han Yang
Chin Pan
1
+ PDF Chat Noise Tolerance Under Risk Minimization 2012 Naresh Manwani
P. S. Sastry
1
+ Training Deep Neural Networks on Noisy Labels with Bootstrapping 2014 Scott Reed
Honglak Lee
Dragomir Anguelov
Christian Szegedy
Dumitru Erhan
Andrew Rabinovich
1
+ PDF Chat Universal distribution of component frequencies in biological and technological systems 2013 Tin Yau Pang
Sergei Maslov
1
+ Wide Residual Networks 2016 Sergey Zagoruyko
Nikos Komodakis
1
+ Improved Regularization of Convolutional Neural Networks with Cutout 2017 Terrance DeVries
Graham W. Taylor
1
+ Safeguarded Dynamic Label Regression for Generalized Noisy Supervision 2019 Jiangchao Yao
Ya Zhang
Ivor W. Tsang
Jun Sun
1
+ TRAINING DEEP NEURAL NETWORKS ON NOISY LABELS WITH BOOTSTRAPPING 2015 Scott Reed
Honglak Lee
Dragomir Anguelov
Christian Szegedy
Dumitru Erhan
Andrew Rabinovich
1
+ PDF Chat Robust Loss Functions under Label Noise for Deep Neural Networks 2017 Aritra Ghosh
Himanshu Kumar
P. S. Sastry
1
+ Wide Residual Networks 2016 Sergey Zagoruyko
Nikos Komodakis
1
+ PDF Chat Iterative Learning with Open-set Noisy Labels 2018 Yisen Wang
Weiyang Liu
Xingjun Ma
James Bailey
Hongyuan Zha
Le Song
Shu‐Tao Xia
1