Jie Chen

Follow

Generating author description...

Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Predictive learning via rule ensembles 2008 Jerome H. Friedman
Bogdan Popescu
2
+ PDF Chat Visualizing the Effects of Predictor Variables in Black Box Supervised Learning Models 2020 Daniel W. Apley
Jingyu Zhu
2
+ A new derivative based importance criterion for groups of variables and its link with the global sensitivity indices 2010 I. M. Sobol
Sergei Kucherenko
2
+ LOTUS: An Algorithm for Building Accurate and Comprehensible Logistic Regression Trees 2004 Kin-Yee Chan
Wei‐Yin Loh
1
+ Derivative based global sensitivity measures and their link with global sensitivity indices 2009 I. M. Sobol
Sergei Kucherenko
1
+ PDF Chat Model-Based Recursive Partitioning 2008 Achim Zeileis
Torsten Hothorn
Kurt Hornik
1
+ Stochastic gradient boosting 2002 Jerome H. Friedman
1
+ PDF Chat Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author) 2001 Leo Breiman
1
+ PDF Chat Projection Pursuit Regression 1981 Jerome H. Friedman
Werner Stuetzle
1
+ Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates 2001 I. M. Sobol
1
+ PDF Chat Unbiased Recursive Partitioning: A Conditional Inference Framework 2006 Torsten Hothorn
Kurt Hornik
Achim Zeileis
1
+ PDF Chat Peeking Inside the Black Box: Visualizing Statistical Learning With Plots of Individual Conditional Expectation 2014 Alex Goldstein
Adam Kapelner
Justin Bleich
Emil Pitkin
1
+ Practical Bayesian Optimization of Machine Learning Algorithms 2012 Jasper Snoek
Hugo Larochelle
Ryan P. Adams
1
+ An Exploratory Technique for Investigating Large Quantities of Categorical Data 1980 Gordon V. Kass
1
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
1
+ PDF Chat Layer-Wise Relevance Propagation for Neural Networks with Local Renormalization Layers 2016 Alexander Binder
Grégoire Montavon
Sebastian Lapuschkin
Klaus‐Robert MĂŒller
Wojciech Samek
1
+ Axiomatic Attribution for Deep Networks 2017 Mukund Sundararajan
Ankur Taly
Qiqi Yan
1
+ Learning Important Features Through Propagating Activation Differences 2017 Avanti Shrikumar
Peyton Greenside
Anshul Kundaje
1
+ Neural Message Passing for Quantum Chemistry 2017 Justin Gilmer
Samuel S. Schoenholz
Patrick Riley
Oriol Vinyals
George E. Dahl
1
+ A Unified Approach to Interpreting Model Predictions 2017 Scott Lundberg
Su‐In Lee
1
+ PDF Chat Action Schema Networks: Generalised Policies With Deep Learning 2018 Sam Toyer
Felipe Trevizan
Sylvie Thiébaux
Lexing Xie
1
+ Transparent Model Distillation. 2018 Sarah Tan
Rich Caruana
Giles Hooker
Albert Gordo
1
+ Consistent Individualized Feature Attribution for Tree Ensembles. 2018 Scott Lundberg
Gabriel Erion
Su‐In Lee
1
+ Explainable Neural Networks based on Additive Index Models 2018 Joel Vaughan
Agus Sudjianto
Erind Brahimi
Jie Chen
Vijayan N. Nair
1
+ Learning Single Index Models in Gaussian Space 2018 Rishabh Dudeja
Daniel Hsu
1
+ Model Interpretation: A Unified Derivative-based Framework for Nonparametric Regression and Supervised Machine Learning 2018 Xiaoyu Liu
Jie Chen
Vijayan N. Nair
Agus Sudjianto
1
+ Learning Global Additive Explanations for Neural Nets Using Model Distillation 2018 Sarah Tan
Rich Caruana
Giles Hooker
Paul Koch
Albert Gordo
1
+ Gated Graph Sequence Neural Networks 2015 Yujia Li
Daniel Tarlow
Marc Brockschmidt
Richard S. Zemel
1
+ "Why Should I Trust You?": Explaining the Predictions of Any Classifier 2016 Marco TĂșlio Ribeiro
Sameer Singh
Carlos Guestrin
1
+ A Unified Approach to Interpreting Model Predictions 2017 Scott Lundberg
Su‐In Lee
1
+ Semi-Supervised Classification with Graph Convolutional Networks 2016 Thomas Kipf
Max Welling
1
+ PDF Chat Distribution-Free Predictive Inference for Regression 2017 Jing Lei
Max G’Sell
Alessandro Rinaldo
Ryan J. Tibshirani
Larry Wasserman
1
+ Adam: A Method for Stochastic Optimization 2014 Diederik P. Kingma
Jimmy Ba
1
+ Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering 2016 Michaël Defferrard
Xavier Bresson
Pierre Vandergheynst
1
+ XGBoost 2016 Tianqi Chen
Carlos Guestrin
1
+ PDF Chat Adaptive Explainable Neural Networks (Axnns) 2020 Jie Chen
Joel Vaughan
Vijay Nair
Agus Sudjianto
1
+ Inductive Representation Learning on Large Graphs 2017 William L. Hamilton
Rex Ying
Jure Leskovec
1
+ Spectral Networks and Locally Connected Networks on Graphs 2013 Joan Bruna
Wojciech Zaremba
Arthur Szlam
Yann LeCun
1
+ ADADELTA: An Adaptive Learning Rate Method 2012 Matthew D. Zeiler
1
+ Very Deep Convolutional Networks for Large-Scale Image Recognition 2014 Karen Simonyan
Andrew Zisserman
1
+ A Review on Global Sensitivity Analysis Methods 2015 Bertrand Iooss
Paul LemaĂźtre
1