João Sá Sousa

Follow

Generating author description...

All published works
Action Title Year Authors
+ Scalable and Privacy-Preserving Federated Principal Component Analysis 2023 David Froelicher
Hyunghoon Cho
Manaswitha Edupalli
João Sá Sousa
Jean-Philippe Bossuat
Apostolos Pyrgelis
Juan Ramón Troncoso-Pastoriza
Bonnie Berger
Jean‐Pierre Hubaux
+ PDF Chat Scalable Privacy-Preserving Distributed Learning 2021 David Froelicher
Juan Ramón Troncoso-Pastoriza
Apostolos Pyrgelis
Sinem Sav
João Sá Sousa
Jean-Philippe Bossuat
Jean‐Pierre Hubaux
+ POSEIDON: Privacy-Preserving Federated Neural Network Learning 2021 Sinem Sav
Apostolos Pyrgelis
Juan Ramón Troncoso-Pastoriza
David Froelicher
Jean-Philippe Bossuat
João Sá Sousa
Jean‐Pierre Hubaux
+ POSEIDON: Privacy-Preserving Federated Neural Network Learning 2020 Sinem Sav
Apostolos Pyrgelis
Juan Ramón Troncoso-Pastoriza
David Froelicher
Jean-Philippe Bossuat
João Sá Sousa
Jean‐Pierre Hubaux
+ Scalable Privacy-Preserving Distributed Learning 2020 David Froelicher
Juan Ramón Troncoso-Pastoriza
Apostolos Pyrgelis
Sinem Sav
João Sá Sousa
Jean-Philippe Bossuat
Jean‐Pierre Hubaux
+ PDF Chat Drynx: Decentralized, Secure, Verifiable System for Statistical Queries and Machine Learning on Distributed Datasets 2020 David Froelicher
Juan Ramón Troncoso-Pastoriza
João Sá Sousa
Jean‐Pierre Hubaux
+ Drynx: Decentralized, Secure, Verifiable System for Statistical Queries and Machine Learning on Distributed Datasets 2019 David Froelicher
Juan Ramón Troncoso-Pastoriza
João Sá Sousa
Jean‐Pierre Hubaux
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Helen: Maliciously Secure Coopetitive Learning for Linear Models 2019 Wenting Zheng
Raluca Ada Popa
Joseph E. Gonzalez
Ion Stoica
7
+ PDF Chat Membership Inference Attacks Against Machine Learning Models 2017 Reza Shokri
Marco Stronati
Congzheng Song
Vitaly Shmatikov
6
+ PDF Chat Deep Learning with Differential Privacy 2016 Martı́n Abadi
Andy Chu
Ian Goodfellow
H. Brendan McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
6
+ PDF Chat Drynx: Decentralized, Secure, Verifiable System for Statistical Queries and Machine Learning on Distributed Datasets 2020 David Froelicher
Juan Ramón Troncoso-Pastoriza
João Sá Sousa
Jean‐Pierre Hubaux
5
+ On Ideal Lattices and Learning with Errors over Rings 2010 Vadim Lyubashevsky
Chris Peikert
Oded Regev
5
+ PDF Chat Exploiting Unintended Feature Leakage in Collaborative Learning 2019 Luca Melis
Congzheng Song
Emiliano De Cristofaro
Vitaly Shmatikov
5
+ PDF Chat Beyond Inferring Class Representatives: User-Level Privacy Leakage From Federated Learning 2019 Zhibo Wang
Mengkai Song
Zhifei Zhang
Yang Song
Qian Wang
Hairong Qi
4
+ Trident: Efficient 4PC Framework for Privacy Preserving Machine Learning 2020 Harsh Chaudhari
Rahul Rachuri
Ajith Suresh
4
+ Federated Optimization: Distributed Machine Learning for On-Device Intelligence 2016 Jakub Konečný
H. Brendan McMahan
Daniel Ramage
Peter Richtárik
4
+ Federated Learning of Deep Networks using Model Averaging 2016 H. Brendan McMahan
Eider Moore
Daniel Ramage
Blaise Agüera y Arcas
4
+ PDF Chat Quantum supremacy using a programmable superconducting processor 2019 Frank Arute
Kunal Arya
Ryan Babbush
Dave Bacon
Joseph C. Bardin
R. Barends
Rupak Biswas
Sergio Boixo
Fernando G. S. L. Brandão
David A. Buell
4
+ PDF Chat Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference Attacks against Centralized and Federated Learning 2019 Milad Nasr
Reza Shokri
Amir Houmansadr
4
+ Learning Differentially Private Recurrent Language Models 2017 H. Brendan McMahan
Daniel Ramage
Kunal Talwar
Li Zhang
4
+ PDF Chat Do We Need More Training Data? 2015 Xiangxin Zhu
Carl Vondrick
Charless C. Fowlkes
Deva Ramanan
4
+ DP-ADMM: ADMM-Based Distributed Learning With Differential Privacy 2019 Zonghao Huang
Rui Hu
Yuanxiong Guo
Eric Chan‐Tin
Yanmin Gong
4
+ PDF Chat Privacy-Preserving Federated Brain Tumour Segmentation 2019 Wenqi Li
Fausto Milletarì
Daguang Xu
Nicola Rieke
Jonny Hancox
Wentao Zhu
Maximilian Baust
Yan Cheng
Sébastien Ourselin
M. Jorge Cardoso
4
+ A blueprint for demonstrating quantum supremacy with superconducting qubits 2018 C. Neill
P. Roushan
Kostyantyn Kechedzhi
Sergio Boixo
Sergei V. Isakov
Vadim Smelyanskiy
A. Megrant
B. Chiaro
A. Dunsworth
Kunal Arya
3
+ PDF Chat A Hybrid Approach to Privacy-Preserving Federated Learning 2019 Stacey Truex
Nathalie Baracaldo
Ali Anwar
Thomas Steinke
Heiko Ludwig
Rui Zhang
Yi Zhou
3
+ PDF Chat Scalable Privacy-Preserving Distributed Learning 2021 David Froelicher
Juan Ramón Troncoso-Pastoriza
Apostolos Pyrgelis
Sinem Sav
João Sá Sousa
Jean-Philippe Bossuat
Jean‐Pierre Hubaux
3
+ A Berkeley View of Systems Challenges for AI 2017 Ion Stoica
Dawn Song
Raluca Ada Popa
David A. Patterson
Michael W. Mahoney
Randy H. Katz
Anthony D. Joseph
Michael I. Jordan
Joseph M. Hellerstein
Joseph E. Gonzalez
3
+ PDF Chat Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification 2015 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
2
+ PDF Chat Universally Utility-maximizing Privacy Mechanisms 2012 Arpita Ghosh
Tim Roughgarden
Mukund Sundararajan
2
+ Centrally Banked Cryptocurrencies 2016 George Danezis
Sarah Meiklejohn
2
+ Parallelized Stochastic Gradient Descent 2010 Martin Zinkevich
Markus Weimer
Lihong Li
Alex Smola
2
+ PDF Chat Smooth minimization of non-smooth functions 2004 Yu. Nesterov
2
+ PDF Chat Plausible deniability for privacy-preserving data synthesis 2017 Vincent Bindschaedler
Reza Shokri
Carl A. Gunter
2
+ Differentially Private Federated Learning: A Client Level Perspective 2017 R. Geyer
Tassilo J. Klein
Moin Nabi
2
+ Federated Learning with Non-IID Data 2018 Yue Zhao
Meng Li
Liangzhen Lai
Naveen Suda
Damon Civin
Vikas Chandra
2
+ Cooperative SGD: A unified Framework for the Design and Analysis of Communication-Efficient SGD Algorithms 2018 Jianyu Wang
Gauri Joshi
2
+ Gradient Descent Provably Optimizes Over-parameterized Neural Networks 2018 Simon S. Du
Xiyu Zhai
Barnabás Póczos
Aarti Singh
2
+ PDF Chat Privacy-Preserving Multiparty Learning for Logistic Regression 2018 Wei Du
Ang Li
Qinghua Li
2
+ HotStuff: BFT Consensus in the Lens of Blockchain 2018 Maofan Yin
Dahlia Malkhi
Michael K. Reiter
Guy Golan Gueta
Ittai Abraham
2
+ PDF Chat Realizing private and practical pharmacological collaboration 2018 Brian Hie
Hyunghoon Cho
Bonnie Berger
2
+ Gradient Descent Finds Global Minima of Deep Neural Networks 2018 Simon S. Du
Jason D. Lee
Haochuan Li
Liwei Wang
Xiyu Zhai
2
+ XONN: XNOR-based Oblivious Deep Neural Network Inference 2019 M. Sadegh Riazi
Mohammad Samragh
Hao Chen
Kim Laine
Kristin Lauter
Farinaz Koushanfar
2
+ Decentralized Stochastic Optimization and Gossip Algorithms with Compressed Communication 2019 Anastasia Koloskova
Sebastian U. Stich
Martin Jaggi
2
+ PDF Chat In-Datacenter Performance Analysis of a Tensor Processing Unit 2017 Norman P. Jouppi
Cliff Young
Nishant Patil
David A. Patterson
Gaurav Agrawal
Raminder Bajwa
S. C. Bates
Suresh Bhatia
Nan Boden
Al Borchers
2
+ Asynchronous Decentralized Parallel Stochastic Gradient Descent 2017 Xiangru Lian
Wei Zhang
Ce Zhang
Ji Liu
2
+ Optimization Methods for Large-Scale Machine Learning 2018 Léon Bottou
Frank E. Curtis
Jorge Nocedal
2
+ Enhancing Bitcoin Security and Performance with Strong Consistency via Collective Signing 2016 Eleftherios Kokoris-Kogias
Philipp Jovanovic
Nicolas Gailly
Ismail Khoffi
Linus Gasser
Bryan Ford
2
+ Deep learning with Elastic Averaging SGD 2014 Sixin Zhang
Anna Choromanska
Yann LeCun
2
+ Efficient Private Statistics with Succinct Sketches 2016 Luca Melis
George Danezis
Emiliano De Cristofaro
2
+ Stealing machine learning models via prediction APIs 2016 Florian Tramèr
Fan Zhang
Ari Juels
Michael K. Reiter
Thomas Ristenpart
2
+ PDF Chat Secure Evaluation of Quantized Neural Networks 2020 Anders Dalskov
Daniel Escudero
Marcel Keller
2
+ PDF Chat Differentially Private Model Publishing for Deep Learning 2019 Lei Yu
Ling Liu
Calton Pu
Mehmet Emre Gürsoy
Stacey Truex
2
+ BLAZE: Blazing Fast Privacy-Preserving Machine Learning 2020 Arpita Patra
Ajith Suresh
2
+ PDF Chat Falcon: Honest-Majority Maliciously Secure Framework for Private Deep Learning 2020 Sameer Wagh
Shruti Tople
Fabrice Benhamouda
Eyal Kushilevitz
Prateek Mittal
Tal Rabin
2
+ Cooperative SGD: A unified Framework for the Design and Analysis of Communication-Efficient SGD Algorithms 2018 Jianyu Wang
Gauri Joshi
2
+ Evaluating Differentially Private Machine Learning in Practice 2019 Bargav Jayaraman
David Evans
2
+ Gazelle: A Low Latency Framework for Secure Neural Network Inference 2018 Chiraag Juvekar
Vinod Vaikuntanathan
Anantha P. Chandrakasan
2