Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Pierre H. Richemond
Follow
Share
Generating author description...
All published works
Action
Title
Year
Authors
+
SemPPL: Predicting pseudo-labels for better contrastive representations
2023
Matko Bošnjak
Pierre H. Richemond
Nenad Tomašev
Florian Strub
Jacob C. Walker
Felix Hill
Lars Buesing
Razvan Pascanu
Charles Blundell
Jovana Mitrovic
+
The Edge of Orthogonality: A Simple View of What Makes BYOL Tick
2023
Pierre H. Richemond
Allison Tam
Yunhao Tang
Florian Strub
Bilal Piot
Felix Hill
+
Zipfian environments for Reinforcement Learning
2022
Stephanie C. Y. Chan
Andrew K. Lampinen
Pierre H. Richemond
Felix Hill
+
Data Distributional Properties Drive Emergent In-Context Learning in Transformers
2022
Stephanie C. Y. Chan
Adam Santoro
Andrew K. Lampinen
Jane X. Wang
Aaditya Singh
Pierre H. Richemond
Jay McClelland
Felix Hill
+
Categorical SDEs with Simplex Diffusion
2022
Pierre H. Richemond
Sander Dieleman
Arnaud Doucet
+
Continuous diffusion for categorical data
2022
Sander Dieleman
Laurent Sartran
Arman Roshannai
Nikolay Savinov
Yaroslav Ganin
Pierre H. Richemond
Arnaud Doucet
Robin Strudel
Chris Dyer
Conor Durkan
+
BYOL works even without batch statistics.
2020
Pierre H. Richemond
Jean-Bastien Grill
Florent Altché
Corentin Tallec
Florian Strub
Andrew Brock
Samuel Smith
Soham De
Razvan Pascanu
Bilal Piot
+
Bootstrap your own latent: A new approach to self-supervised Learning
2020
Jean-Bastien Grill
Florian Strub
Florent Altché
Corentin Tallec
Pierre H. Richemond
Elena Buchatskaya
Carl Doersch
Bernardo Ávila Pires
Zhaohan Daniel Guo
Mohammad Gheshlaghi Azar
+
BYOL works even without batch statistics
2020
Pierre H. Richemond
Jean-Bastien Grill
Florent Altché
Corentin Tallec
Florian Strub
Andrew Brock
Samuel Smith
Soham De
Razvan Pascanu
Bilal Piot
+
PDF
Chat
Biologically inspired architectures for sample-efficient deep reinforcement learning
2019
Pierre H. Richemond
Arinbjörn Kolbeinsson
Yike Guo
+
How many weights are enough : can tensor factorization learn efficient policies ?
2019
Pierre H. Richemond
Arinbjörn Kolbeinsson
Yike Guo
+
Static Activation Function Normalization.
2019
Pierre H. Richemond
Yike Guo
+
Combining learning rate decay and weight decay with complexity gradient descent - Part I
2019
Pierre H. Richemond
Yike Guo
+
Sample-Efficient Reinforcement Learning with Maximum Entropy Mellowmax Episodic Control
2019
Marta Sarrico
Kai Arulkumaran
Andrea Agostinelli
Pierre H. Richemond
Anil A. Bharath
+
Biologically inspired architectures for sample-efficient deep reinforcement learning
2019
Pierre H. Richemond
Arinbjörn Kolbeinsson
Yike Guo
+
Memory-Efficient Episodic Control Reinforcement Learning with Dynamic Online k-means
2019
Andrea Agostinelli
Kai Arulkumaran
Marta Sarrico
Pierre H. Richemond
Anil A. Bharath
+
Static Activation Function Normalization
2019
Pierre H. Richemond
Yike Guo
+
Combining learning rate decay and weight decay with complexity gradient descent - Part I
2019
Pierre H. Richemond
Yike Guo
+
Diffusing Policies : Towards Wasserstein Policy Gradient Flows
2018
Pierre H. Richemond
Brendan Maginnis
+
A short variational proof of equivalence between policy gradients and soft Q learning
2017
Pierre H. Richemond
Brendan Maginnis
+
Efficiently applying attention to sequential data with the Recurrent Discounted Attention unit
2017
Brendan Maginnis
Pierre H. Richemond
+
On Wasserstein Reinforcement Learning and the Fokker-Planck equation
2017
Pierre H. Richemond
Brendan Maginnis
+
A short variational proof of equivalence between policy gradients and soft Q learning
2017
Pierre H. Richemond
Brendan Maginnis
Common Coauthors
Coauthor
Papers Together
Yike Guo
7
Florian Strub
5
Brendan Maginnis
5
Felix Hill
4
Bilal Piot
4
Florent Altché
3
Michal Vaľko
3
Arinbjörn Kolbeinsson
3
Jean-Bastien Grill
3
Razvan Pascanu
3
Arnaud Doucet
2
Marta Sarrico
2
Andrew Brock
2
Anil A. Bharath
2
Andrew K. Lampinen
2
Sander Dieleman
2
Soham De
2
Kai Arulkumaran
2
Stephanie C. Y. Chan
2
Corentin Tallec
2
Andrea Agostinelli
2
Arman Roshannai
1
Mohammad Gheshlaghi Azar
1
Elena Buchatskaya
1
Nikolay Savinov
1
Jacob C. Walker
1
Rémi Leblond
1
Lars Buesing
1
Laurent Sartran
1
Matko Bošnjak
1
Jane X. Wang
1
Nenad Tomašev
1
Jovana Mitrovic
1
Samuel Smith
1
Yaroslav Ganin
1
Conor Durkan
1
Carl Doersch
1
Curtis Hawthorne
1
Jonas Adler
1
Zhaohan Daniel Guo
1
Koray Kavukcuoglu
1
Yunhao Tang
1
Chris Dyer
1
Aaditya Singh
1
Charles Blundell
1
Rémi Munos
1
Jay McClelland
1
Samuel Smith
1
Robin Strudel
1
Adam Santoro
1
Commonly Cited References
Action
Title
Year
Authors
# of times referenced
+
Model-Free Episodic Control
2016
Charles Blundell
Benigno Uría
Alexander Pritzel
Yazhe Li
Avraham Ruderman
Joel Z. Leibo
Jack W. Rae
Daan Wierstra
Demis Hassabis
3
+
Big Self-Supervised Models are Strong Semi-Supervised Learners
2020
Ting Chen
Simon Kornblith
Kevin Swersky
Mohammad Norouzi
Geoffrey E. Hinton
2
+
Deep Relaxation: partial differential equations for optimizing deep neural networks
2017
Pratik Chaudhari
Adam M. Oberman
Stanley Osher
Stefano Soatto
Guillaume Carlier
2
+
Asynchronous Methods for Deep Reinforcement Learning
2016
Volodymyr Mnih
Adrià Puigdomènech Badia
Mehdi Mirza
Alex Graves
Timothy Lillicrap
Tim Harley
David Silver
Koray Kavukcuoglu
2
+
PDF
Chat
Deep Residual Learning for Image Recognition
2016
Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
2
+
Improved Baselines with Momentum Contrastive Learning
2020
Xinlei Chen
Haoqi Fan
Ross Girshick
Kaiming He
2
+
A unified view of entropy-regularized Markov decision processes
2017
Gergely Neu
Anders Jönsson
Vicenç Gómez
2
+
PDF
Chat
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
2015
Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
2
+
Trust Region Policy Optimization
2015
John Schulman
Sergey Levine
Philipp Moritz
Michael I. Jordan
Pieter Abbeel
2
+
Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour
2017
Priya Goyal
Piotr Dollár
Ross Girshick
Pieter Noordhuis
Lukasz Wesolowski
Aapo Kyrola
Andrew Tulloch
Yangqing Jia
Kaiming He
2
+
Deep reinforcement learning with double Q-Learning
2016
Hado van Hasselt
Arthur Guez
David Silver
2
+
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
2015
Sergey Ioffe
Christian Szegedy
2
+
Scaling SGD Batch Size to 32K for ImageNet Training.
2017
Yang You
Igor Gitman
Boris Ginsburg
2
+
PDF
Chat
Deep Clustering for Unsupervised Learning of Visual Features
2018
Mathilde Caron
Piotr Bojanowski
Armand Joulin
Matthijs Douze
2
+
Representation Learning with Contrastive Predictive Coding
2018
Aäron van den Oord
Yazhe Li
Oriol Vinyals
2
+
Large Batch Training of Convolutional Networks
2017
Yang You
Igor Gitman
Boris Ginsburg
2
+
PDF
Chat
Building machines that learn and think like people
2016
Brenden M. Lake
Tomer Ullman
Joshua B. Tenenbaum
Samuel J. Gershman
2
+
PDF
Chat
The Arcade Learning Environment: An Evaluation Platform for General Agents
2013
Marc G. Bellemare
Yavar Naddaf
Joel Veness
Michael Bowling
2
+
PDF
Chat
Statistics of Critical Points of Gaussian Fields on Large-Dimensional Spaces
2007
Alan J. Bray
David S. Dean
1
+
Continuous control with deep reinforcement learning
2015
Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
Nicolas Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
1
+
PDF
Chat
Group Invariant Scattering
2012
Stéphane Mallat
1
+
Asymptotic analysis of the exponential penalty trajectory in linear programming
1994
Roberto Cominetti
Jaime San Martı́n
1
+
Identifying and attacking the saddle point problem in high-dimensional non-convex optimization
2014
Yann Dauphin
Razvan Pascanu
Çaǧlar Gülçehre
Kyunghyun Cho
Surya Ganguli
Yoshua Bengio
1
+
SGDR: Stochastic Gradient Descent with Warm Restarts
2016
Ilya Loshchilov
Frank Hutter
1
+
Discriminative Unsupervised Feature Learning with Convolutional Neural Networks
2014
Alexey Dosovitskiy
Jost Tobias Springenberg
Martin Riedmiller
Thomas Brox
1
+
Optimizing Neural Networks with Kronecker-factored Approximate Curvature
2015
James Martens
Roger Grosse
1
+
Learning with Pseudo-Ensembles
2014
Phil Bachman
Ouais Alsharif
Doina Precup
1
+
Stochastic Backpropagation and Approximate Inference in Deep Generative Models
2014
Danilo Jimenez Rezende
Shakir Mohamed
Daan Wierstra
1
+
PDF
Chat
Rethinking the Inception Architecture for Computer Vision
2016
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jon Shlens
Zbigniew Wojna
1
+
On the difficulty of training Recurrent Neural Networks
2012
Razvan Pascanu
Tomáš Mikolov
Yoshua Bengio
1
+
PDF
Chat
Statistical Applications of the Multivariate Skew Normal Distribution
1999
Adelchi Azzalini
Antonella Capitanio
1
+
PDF
Chat
ImageNet Large Scale Visual Recognition Challenge
2015
Olga Russakovsky
Jia Deng
Hao Su
Jonathan Krause
Sanjeev Satheesh
Sean Ma
Zhiheng Huang
Andrej Karpathy
Aditya Khosla
Michael S. Bernstein
1
+
PDF
Chat
Fully convolutional networks for semantic segmentation
2015
Jonathan Long
Evan Shelhamer
Trevor Darrell
1
+
Semi-supervised Learning with Deep Generative Models
2014
Diederik P. Kingma
Shakir Mohamed
Danilo Jimenez Rezende
Max Welling
1
+
PDF
Chat
Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation
2014
Ross Girshick
Jeff Donahue
Trevor Darrell
Jitendra Malik
1
+
Free Probability and Random Matrices
2017
James A. Mingo
Roland Speicher
1
+
Generating Sequences With Recurrent Neural Networks
2013
Alex Graves
1
+
Optimal Transport for Applied Mathematicians : Calculus of Variations, PDEs, and Modeling
2015
Filippo Santambrogio
1
+
Wide Residual Networks
2016
Sergey Zagoruyko
Nikos Komodakis
1
+
Taming the Noise in Reinforcement Learning via Soft Updates
2015
Roy Fox
Ari Pakman
Naftali Tishby
1
+
Zoneout: Regularizing RNNs by Randomly Preserving Hidden Activations
2016
David Krueger
Tegan Maharaj
János Kramár
Mohammad Pezeshki
Nicolas Ballas
Nan Rosemary Ke
Anirudh Goyal
Yoshua Bengio
Aaron Courville
Chris Pal
1
+
Adversarially Learned Inference
2016
Vincent Dumoulin
Ishmael Belghazi
Ben Poole
Olivier Mastropietro
Alex Lamb
Martín Arjovsky
Aaron Courville
1
+
Adversarial Feature Learning
2016
Jeff Donahue
Philipp Krähenbühl
Trevor Darrell
1
+
Adaptive Computation Time for Recurrent Neural Networks
2016
Alex Graves
1
+
PDF
Chat
Linear readout of object manifolds
2016
SueYeon Chung
Daniel D. Lee
Haim Sompolinsky
1
+
Instance Normalization: The Missing Ingredient for Fast Stylization
2016
Dmitry Ulyanov
Andrea Vedaldi
Victor Lempitsky
1
+
Algorithms for Minimization Without Derivatives
1974
G. Giftson Samuel
Richard P. Brent
1
+
TensorLy: tensor learning in python
2019
Jean Kossaifi
Yannis Panagakis
Anima Anandkumar
Maja Pantić
1
+
Combining policy gradient and Q-learning
2016
Brendan O’Donoghue
Rémi Munos
Koray Kavukcuoglu
Volodymyr Mnih
1
+
PDF
Chat
Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles
2016
Mehdi Noroozi
Paolo Favaro
1