Pierre H. Richemond

Follow

Generating author description...

All published works
Action Title Year Authors
+ SemPPL: Predicting pseudo-labels for better contrastive representations 2023 Matko Bošnjak
Pierre H. Richemond
Nenad Tomašev
Florian Strub
Jacob C. Walker
Felix Hill
Lars Buesing
Razvan Pascanu
Charles Blundell
Jovana Mitrovic
+ The Edge of Orthogonality: A Simple View of What Makes BYOL Tick 2023 Pierre H. Richemond
Allison Tam
Yunhao Tang
Florian Strub
Bilal Piot
Felix Hill
+ Zipfian environments for Reinforcement Learning 2022 Stephanie C. Y. Chan
Andrew K. Lampinen
Pierre H. Richemond
Felix Hill
+ Data Distributional Properties Drive Emergent In-Context Learning in Transformers 2022 Stephanie C. Y. Chan
Adam Santoro
Andrew K. Lampinen
Jane X. Wang
Aaditya Singh
Pierre H. Richemond
Jay McClelland
Felix Hill
+ Categorical SDEs with Simplex Diffusion 2022 Pierre H. Richemond
Sander Dieleman
Arnaud Doucet
+ Continuous diffusion for categorical data 2022 Sander Dieleman
Laurent Sartran
Arman Roshannai
Nikolay Savinov
Yaroslav Ganin
Pierre H. Richemond
Arnaud Doucet
Robin Strudel
Chris Dyer
Conor Durkan
+ BYOL works even without batch statistics. 2020 Pierre H. Richemond
Jean-Bastien Grill
Florent Altché
Corentin Tallec
Florian Strub
Andrew Brock
Samuel Smith
Soham De
Razvan Pascanu
Bilal Piot
+ Bootstrap your own latent: A new approach to self-supervised Learning 2020 Jean-Bastien Grill
Florian Strub
Florent Altché
Corentin Tallec
Pierre H. Richemond
Elena Buchatskaya
Carl Doersch
Bernardo Ávila Pires
Zhaohan Daniel Guo
Mohammad Gheshlaghi Azar
+ BYOL works even without batch statistics 2020 Pierre H. Richemond
Jean-Bastien Grill
Florent Altché
Corentin Tallec
Florian Strub
Andrew Brock
Samuel Smith
Soham De
Razvan Pascanu
Bilal Piot
+ PDF Chat Biologically inspired architectures for sample-efficient deep reinforcement learning 2019 Pierre H. Richemond
Arinbjörn Kolbeinsson
Yike Guo
+ How many weights are enough : can tensor factorization learn efficient policies ? 2019 Pierre H. Richemond
Arinbjörn Kolbeinsson
Yike Guo
+ Static Activation Function Normalization. 2019 Pierre H. Richemond
Yike Guo
+ Combining learning rate decay and weight decay with complexity gradient descent - Part I 2019 Pierre H. Richemond
Yike Guo
+ Sample-Efficient Reinforcement Learning with Maximum Entropy Mellowmax Episodic Control 2019 Marta Sarrico
Kai Arulkumaran
Andrea Agostinelli
Pierre H. Richemond
Anil A. Bharath
+ Biologically inspired architectures for sample-efficient deep reinforcement learning 2019 Pierre H. Richemond
Arinbjörn Kolbeinsson
Yike Guo
+ Memory-Efficient Episodic Control Reinforcement Learning with Dynamic Online k-means 2019 Andrea Agostinelli
Kai Arulkumaran
Marta Sarrico
Pierre H. Richemond
Anil A. Bharath
+ Static Activation Function Normalization 2019 Pierre H. Richemond
Yike Guo
+ Combining learning rate decay and weight decay with complexity gradient descent - Part I 2019 Pierre H. Richemond
Yike Guo
+ Diffusing Policies : Towards Wasserstein Policy Gradient Flows 2018 Pierre H. Richemond
Brendan Maginnis
+ A short variational proof of equivalence between policy gradients and soft Q learning 2017 Pierre H. Richemond
Brendan Maginnis
+ Efficiently applying attention to sequential data with the Recurrent Discounted Attention unit 2017 Brendan Maginnis
Pierre H. Richemond
+ On Wasserstein Reinforcement Learning and the Fokker-Planck equation 2017 Pierre H. Richemond
Brendan Maginnis
+ A short variational proof of equivalence between policy gradients and soft Q learning 2017 Pierre H. Richemond
Brendan Maginnis
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Model-Free Episodic Control 2016 Charles Blundell
Benigno Uría
Alexander Pritzel
Yazhe Li
Avraham Ruderman
Joel Z. Leibo
Jack W. Rae
Daan Wierstra
Demis Hassabis
3
+ Big Self-Supervised Models are Strong Semi-Supervised Learners 2020 Ting Chen
Simon Kornblith
Kevin Swersky
Mohammad Norouzi
Geoffrey E. Hinton
2
+ Deep Relaxation: partial differential equations for optimizing deep neural networks 2017 Pratik Chaudhari
Adam M. Oberman
Stanley Osher
Stefano Soatto
Guillaume Carlier
2
+ Asynchronous Methods for Deep Reinforcement Learning 2016 Volodymyr Mnih
Adrià Puigdomènech Badia
Mehdi Mirza
Alex Graves
Timothy Lillicrap
Tim Harley
David Silver
Koray Kavukcuoglu
2
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
2
+ Improved Baselines with Momentum Contrastive Learning 2020 Xinlei Chen
Haoqi Fan
Ross Girshick
Kaiming He
2
+ A unified view of entropy-regularized Markov decision processes 2017 Gergely Neu
Anders Jönsson
Vicenç Gómez
2
+ PDF Chat Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification 2015 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
2
+ Trust Region Policy Optimization 2015 John Schulman
Sergey Levine
Philipp Moritz
Michael I. Jordan
Pieter Abbeel
2
+ Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour 2017 Priya Goyal
Piotr Dollár
Ross Girshick
Pieter Noordhuis
Lukasz Wesolowski
Aapo Kyrola
Andrew Tulloch
Yangqing Jia
Kaiming He
2
+ Deep reinforcement learning with double Q-Learning 2016 Hado van Hasselt
Arthur Guez
David Silver
2
+ Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift 2015 Sergey Ioffe
Christian Szegedy
2
+ Scaling SGD Batch Size to 32K for ImageNet Training. 2017 Yang You
Igor Gitman
Boris Ginsburg
2
+ PDF Chat Deep Clustering for Unsupervised Learning of Visual Features 2018 Mathilde Caron
Piotr Bojanowski
Armand Joulin
Matthijs Douze
2
+ Representation Learning with Contrastive Predictive Coding 2018 Aäron van den Oord
Yazhe Li
Oriol Vinyals
2
+ Large Batch Training of Convolutional Networks 2017 Yang You
Igor Gitman
Boris Ginsburg
2
+ PDF Chat Building machines that learn and think like people 2016 Brenden M. Lake
Tomer Ullman
Joshua B. Tenenbaum
Samuel J. Gershman
2
+ PDF Chat The Arcade Learning Environment: An Evaluation Platform for General Agents 2013 Marc G. Bellemare
Yavar Naddaf
Joel Veness
Michael Bowling
2
+ PDF Chat Statistics of Critical Points of Gaussian Fields on Large-Dimensional Spaces 2007 Alan J. Bray
David S. Dean
1
+ Continuous control with deep reinforcement learning 2015 Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
Nicolas Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
1
+ PDF Chat Group Invariant Scattering 2012 Stéphane Mallat
1
+ Asymptotic analysis of the exponential penalty trajectory in linear programming 1994 Roberto Cominetti
Jaime San Martı́n
1
+ Identifying and attacking the saddle point problem in high-dimensional non-convex optimization 2014 Yann Dauphin
Razvan Pascanu
Çaǧlar Gülçehre
Kyunghyun Cho
Surya Ganguli
Yoshua Bengio
1
+ SGDR: Stochastic Gradient Descent with Warm Restarts 2016 Ilya Loshchilov
Frank Hutter
1
+ Discriminative Unsupervised Feature Learning with Convolutional Neural Networks 2014 Alexey Dosovitskiy
Jost Tobias Springenberg
Martin Riedmiller
Thomas Brox
1
+ Optimizing Neural Networks with Kronecker-factored Approximate Curvature 2015 James Martens
Roger Grosse
1
+ Learning with Pseudo-Ensembles 2014 Phil Bachman
Ouais Alsharif
Doina Precup
1
+ Stochastic Backpropagation and Approximate Inference in Deep Generative Models 2014 Danilo Jimenez Rezende
Shakir Mohamed
Daan Wierstra
1
+ PDF Chat Rethinking the Inception Architecture for Computer Vision 2016 Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jon Shlens
Zbigniew Wojna
1
+ On the difficulty of training Recurrent Neural Networks 2012 Razvan Pascanu
Tomáš Mikolov
Yoshua Bengio
1
+ PDF Chat Statistical Applications of the Multivariate Skew Normal Distribution 1999 Adelchi Azzalini
Antonella Capitanio
1
+ PDF Chat ImageNet Large Scale Visual Recognition Challenge 2015 Olga Russakovsky
Jia Deng
Hao Su
Jonathan Krause
Sanjeev Satheesh
Sean Ma
Zhiheng Huang
Andrej Karpathy
Aditya Khosla
Michael S. Bernstein
1
+ PDF Chat Fully convolutional networks for semantic segmentation 2015 Jonathan Long
Evan Shelhamer
Trevor Darrell
1
+ Semi-supervised Learning with Deep Generative Models 2014 Diederik P. Kingma
Shakir Mohamed
Danilo Jimenez Rezende
Max Welling
1
+ PDF Chat Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation 2014 Ross Girshick
Jeff Donahue
Trevor Darrell
Jitendra Malik
1
+ Free Probability and Random Matrices 2017 James A. Mingo
Roland Speicher
1
+ Generating Sequences With Recurrent Neural Networks 2013 Alex Graves
1
+ Optimal Transport for Applied Mathematicians : Calculus of Variations, PDEs, and Modeling 2015 Filippo Santambrogio
1
+ Wide Residual Networks 2016 Sergey Zagoruyko
Nikos Komodakis
1
+ Taming the Noise in Reinforcement Learning via Soft Updates 2015 Roy Fox
Ari Pakman
Naftali Tishby
1
+ Zoneout: Regularizing RNNs by Randomly Preserving Hidden Activations 2016 David Krueger
Tegan Maharaj
János Kramár
Mohammad Pezeshki
Nicolas Ballas
Nan Rosemary Ke
Anirudh Goyal
Yoshua Bengio
Aaron Courville
Chris Pal
1
+ Adversarially Learned Inference 2016 Vincent Dumoulin
Ishmael Belghazi
Ben Poole
Olivier Mastropietro
Alex Lamb
Martín Arjovsky
Aaron Courville
1
+ Adversarial Feature Learning 2016 Jeff Donahue
Philipp Krähenbühl
Trevor Darrell
1
+ Adaptive Computation Time for Recurrent Neural Networks 2016 Alex Graves
1
+ PDF Chat Linear readout of object manifolds 2016 SueYeon Chung
Daniel D. Lee
Haim Sompolinsky
1
+ Instance Normalization: The Missing Ingredient for Fast Stylization 2016 Dmitry Ulyanov
Andrea Vedaldi
Victor Lempitsky
1
+ Algorithms for Minimization Without Derivatives 1974 G. Giftson Samuel
Richard P. Brent
1
+ TensorLy: tensor learning in python 2019 Jean Kossaifi
Yannis Panagakis
Anima Anandkumar
Maja Pantić
1
+ Combining policy gradient and Q-learning 2016 Brendan O’Donoghue
Rémi Munos
Koray Kavukcuoglu
Volodymyr Mnih
1
+ PDF Chat Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles 2016 Mehdi Noroozi
Paolo Favaro
1