Mojmír Mutný

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Optimistic Games for Combinatorial Bayesian Optimization with Application to Protein Design 2024 Melis İlayda Bal
Pier Giuseppe Sessa
Mojmír Mutný
Andreas Krause
+ PDF Chat Transition Constrained Bayesian Optimization via Markov Decision Processes 2024 Jose Pablo Folch
Calvin Tsay
Robert M Lee
Behrang Shafei
Weronika Ormaniec
Andreas Krause
Mark van der Wilk
Ruth Misener
Mojmír Mutný
+ Submodular Reinforcement Learning 2023 Manish Prajapat
Mojmír Mutný
Melanie N. Zeilinger
Andreas Krause
+ Likelihood Ratio Confidence Sets for Sequential Decision Making 2023 Nicolas Emmenegger
Mojmír Mutný
Andreas Krause
+ PDF Chat Tuning particle accelerators with safety constraints using Bayesian optimization 2022 Johannes Kirschner
Mojmír Mutný
Andreas Krause
J. Coello de Portugal
Nicole Hiller
J. Snuverink
+ Experimental Design for Linear Functionals in Reproducing Kernel Hilbert Spaces 2022 Mojmír Mutný
Andreas Krause
+ Active Exploration via Experiment Design in Markov Chains 2022 Mojmír Mutný
Tadeusz J. Janik
Andreas Krause
+ Sensing Cox Processes via Posterior Sampling and Positive Bases. 2021 Mojmír Mutný
Andreas Krause
+ Data Summarization via Bilevel Optimization 2021 Zalán Borsos
Mojmír Mutný
Marco Tagliasacchi
Andreas Krause
+ Diversified Sampling for Batched Bayesian Optimization with Determinantal Point Processes 2021 Elvis Nava
Mojmír Mutný
Andreas Krause
+ Sensing Cox Processes via Posterior Sampling and Positive Bases 2021 Mojmír Mutný
Andreas Krause
+ Efficient Pure Exploration for Combinatorial Bandits with Semi-Bandit Feedback 2021 Marc Jourdan
Mojmír Mutný
Johannes Kirschner
Andreas Krause
+ Learning Controllers for Unstable Linear Quadratic Regulators from a Single Trajectory. 2020 Lenart Treven
Sebastian Curi
Mojmír Mutný
Andreas Krause
+ Coresets via Bilevel Optimization for Continual Learning and Streaming 2020 Zalán Borsos
Mojmír Mutný
Andreas Krause
+ Coresets via Bilevel Optimization for Continual Learning and Streaming 2020 Zalán Borsos
Mojmír Mutný
Andreas Krause
+ Convergence Analysis of Block Coordinate Algorithms with Determinantal Sampling. 2020 Mojmír Mutný
Michał Dereziński
Andreas Krause
+ Learning Stabilizing Controllers for Unstable Linear Quadratic Regulators from a Single Trajectory 2020 Lenart Treven
Sebastian Curi
Mojmír Mutný
Andreas Krause
+ Convergence Analysis of the Randomized Newton Method with Determinantal Sampling. 2019 Mojmír Mutný
Michał Dereziński
Andreas Krause
+ Convergence Analysis of Block Coordinate Algorithms with Determinantal Sampling 2019 Mojmír Mutný
Michał Dereziński
Andreas Krause
+ Adaptive and Safe Bayesian Optimization in High Dimensions via One-Dimensional Subspaces 2019 Johannes Kirschner
Mojmír Mutný
Nicole Hiller
R. Ischebeck
Andreas Krause
+ Convergence Analysis of Block Coordinate Algorithms with Determinantal Sampling 2019 Mojmír Mutný
Michał Dereziński
Andreas Krause
+ Parallel Stochastic Newton Method 2017 Mojmír Mutný
Peter Richtárik
+ Parallel Stochastic Newton Method 2017 Mojmír Mutný
Peter Richtárik
+ Stochastic Second-Order Optimization via von Neumann Series 2016 Mojmír Mutný
+ Learning the Correction for Multi-Path Deviations in Time-of-Flight Cameras 2015 Mojmír Mutný
Rahul Nair
Jens-Malte Gottfried
+ Learning the Correction for Multi-Path Deviations in Time-of-Flight Cameras 2015 Mojmír Mutný
R. Nair
Jens-Malte Gottfried
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat On the limited memory BFGS method for large scale optimization 1989 Cheng‐Di Dong
Jorge Nocedal
3
+ Sub-Sampled Newton Methods II: Local Convergence Rates 2016 Farbod Roosta-Khorasani
Michael W. Mahoney
3
+ Sub-Sampled Newton Methods I: Globally Convergent Algorithms 2016 Farbod Roosta-Khorasani
Michael W. Mahoney
3
+ High-Dimensional Probability: An Introduction with Applications in Data Science 2018 Roman Vershynin
2
+ Automated Scalable Bayesian Inference via Hilbert Coresets 2019 Trevor Campbell
Tamara Broderick
2
+ Continual learning with tiny episodic memories 2019 Arslan Chaudhry
Marcus Rohrbach
Mohamed Elhoseiny
Thalaiyasingam Ajanthan
Puneet K. Dokania
Philip H. S. Torr
Marc’Aurelio Ranzato
2
+ Functional Regularisation for Continual Learning with Gaussian Processes 2020 Michalis K. Titsias
Jonathan Schwarz
Alexander Matthews
Razvan Pascanu
Yee Whye Teh
2
+ Primal-dual rates and certificates 2016 Celestine Dünner
Simone Forte
Martin Takáč
Martin Jaggi
2
+ An Empirical Investigation of Catastrophic Forgetting in Gradient-Based Neural Networks 2014 Ian Goodfellow
Mehdi Mirza
Xiao Da
Aaron Courville
Yoshua Bengio
2
+ PDF Chat Task-Free Continual Learning 2019 Rahaf Aljundi
Klaas Kelchtermans
Tinne Tuytelaars
2
+ Regression Shrinkage and Selection Via the Lasso 1996 Robert Tibshirani
2
+ PDF Chat iCaRL: Incremental Classifier and Representation Learning 2017 Sylvestre-Alvise Rebuffi
Alexander Kolesnikov
Georg Sperl
Christoph H. Lampert
2
+ Newton Sketch: A Linear-time Optimization Algorithm with Linear-Quadratic Convergence 2015 Mert Pilancı
Martin J. Wainwright
2
+ PDF Chat Coordinate descent with arbitrary sampling II: expected separable overapproximation 2016 Zheng Qu
Peter Richtárik
2
+ Overcoming catastrophic forgetting in neural networks 2017 James Kirkpatrick
Razvan Pascanu
Neil C. Rabinowitz
Joel Veness
Guillaume Desjardins
Andrei A. Rusu
Kieran Milan
John Quan
Tiago Ramalho
Agnieszka Grabska‐Barwińska
2
+ PDF Chat On optimal probabilities in stochastic coordinate descent methods 2015 Peter Richtárik
Martin Takáč
2
+ Gaussian Processes and Kernel Methods: A Review on Connections and Equivalences 2018 Motonobu Kanagawa
Philipp Hennig
Dino Sejdinović
Bharath K. Sriperumbudur
2
+ Coresets for Scalable Bayesian Logistic Regression 2016 Jonathan H. Huggins
Trevor Campbell
Tamara Broderick
2
+ A unified framework for approximating and clustering data 2011 Dan Feldman
Michael Langberg
2
+ A System-Level Approach to Controller Synthesis 2019 Yuh-Shyang Wang
Nikolai Matni
John C. Doyle
2
+ PDF Chat On the Sample Complexity of the Linear Quadratic Regulator 2019 Sarah Dean
Horia Mania
Nikolai Matni
Benjamin Recht
Stephen Tu
2
+ BatchBALD: Efficient and Diverse Batch Acquisition for Deep Bayesian Active Learning 2019 Andreas Kirsch
Joost van Amersfoort
Yarin Gal
2
+ PDF Chat Residuals and Influence in Regression 1984 Robert F. Ling
R. Dennis Cook
Sanford Weisberg
2
+ PDF Chat Memory Efficient Experience Replay for Streaming Learning 2019 Tyler L. Hayes
Nathan D. Cahill
Christopher Kanan
2
+ PDF Chat Information Consistency of Nonparametric Gaussian Process Methods 2008 Matthias Seeger
Sham M. Kakade
Dean P. Foster
2
+ A new identity for resolvents of matrices 2013 Michael Gil'
2
+ Variational continual learning 2017 Cuong V. Nguyen
Yingzhen Li
Thang D. Bui
Richard E. Turner
2
+ PDF Chat Random sampling with a reservoir 1985 Jeffrey Scott Vitter
2
+ SDNA: Stochastic Dual Newton Ascent for Empirical Risk Minimization 2015 Zheng Qu
Peter Richtárik
Martin Takáč
Olivier Fercoq
2
+ PDF Chat A tail inequality for quadratic forms of subgaussian random vectors 2012 Daniel Hsu
Sham M. Kakade
Tong Zhang
2
+ Singular vector autoregressions with deterministic terms: Strong consistency and lag order determination 2008 Bent Nielsen
2
+ Understanding Black-box Predictions via Influence Functions 2017 Pang Wei Koh
Percy Liang
2
+ Continual Learning with Deep Generative Replay 2017 Hanul Shin
Jung Kwon Lee
Jaehong Kim
Jiwon Kim
2
+ INCONSISTENT VAR REGRESSION WITH COMMON EXPLOSIVE ROOTS 2013 Peter C.B. Phillips
Tassos Magdalinos
2
+ Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks 2017 Chelsea Finn
Pieter Abbeel
Sergey Levine
2
+ Accelerated, Parallel, and Proximal Coordinate Descent 2015 Olivier Fercoq
Peter Richtárik
1
+ Spatial and Spatio-Temporal Log-Gaussian Cox Processes: Extending the Geostatistical Paradigm 2013 Peter J. Diggle
Paula Moraga
Barry Rowlingson
Benjamín M. Taylor
1
+ PDF Chat Multivariate Nonnegative Quadratic Mappings 2004 Zhi‐Quan Luo
J.F. Sturm
Shuzhong Zhang
1
+ Tridiagonal Toeplitz matrices: properties and novel applications 2012 Silvia Noschese
L. Pasquini
Lothar Reichel
1
+ Random Fields and Geometry 2007 Robert J. Adler
Jonathan Taylor
1
+ The CoMirror algorithm for solving nonsmooth constrained convex problems 2010 Amir Beck
Aharon Ben‐Tal
Nili Guttmann‐Beck
Luba Tetruashvili
1
+ PDF Chat The Why and How of Nonnegative Matrix Factorization 2014 Nicolas Gillis
1
+ The coincidence approach to stochastic point processes 1975 Odile Macchi
1
+ PDF Chat CUR matrix decompositions for improved data analysis 2009 Michael W. Mahoney
Petros Drineas
1
+ Descent approaches for quadratic bilevel programming 1994 L. N. Vicente
Gilles Savard
Joaquím J. Júdice
1
+ Randomized Dual Coordinate Ascent with Arbitrary Sampling 2014 Zheng Qu
Peter Richtárik
Tong Zhang
1
+ Fixed Rank Kriging for Very Large Spatial Data Sets 2008 Noel Cressie
Gardar Johannesson
1
+ Online Least Squares Estimation with Self-Normalized Processes: An Application to Bandit Problems 2011 Yasin Abbasi-Yadkori
Dávid Pál
Csaba Szepesvári
1
+ Sequential Quadratic Programming 1995 Paul T. Boggs
Jon W. Tolle
1
+ PDF Chat Global convergence rate analysis of unconstrained optimization methods based on probabilistic models 2017 Coralia Cartis
Katya Scheinberg
1