Hugh Salimbeni

Follow

Generating author description...

All published works
Action Title Year Authors
+ GPflux: A Library for Deep Gaussian Processes 2021 Vincent Dutordoir
Hugh Salimbeni
Eric Hambro
John Mcleod
Felix Leibfried
Artem Artemev
Mark van der Wilk
James Hensman
Marc Peter Deisenroth
St. John
+ GPflux: A Library for Deep Gaussian Processes 2021 Vincent Dutordoir
Hugh Salimbeni
Eric Hambro
John McLeod
Felix Leibfried
Artem Artemev
Mark van der Wilk
James Hensman
Marc Peter Deisenroth
St. John
+ Stochastic Differential Equations with Variational Wishart Diffusions 2020 Martin Jørgensen
Marc Peter Deisenroth
Hugh Salimbeni
+ Stochastic Differential Equations with Variational Wishart Diffusions 2020 Martin Jørgensen
Marc Peter Deisenroth
Hugh Salimbeni
+ Deep Gaussian Processes with Importance-Weighted Variational Inference 2019 Hugh Salimbeni
Vincent Dutordoir
James Hensman
Marc Peter Deisenroth
+ Natural Gradients in Practice: Non-Conjugate Variational Inference in Gaussian Process Models 2018 Hugh Salimbeni
Stefanos Eleftheriadis
James Hensman
+ Orthogonally Decoupled Variational Gaussian Processes 2018 Hugh Salimbeni
Ching-An Cheng
Byron Boots
Marc Peter Deisenroth
+ Gaussian Process Conditional Density Estimation 2018 Vincent Dutordoir
Hugh Salimbeni
Marc Peter Deisenroth
James Hensman
+ Orthogonally Decoupled Variational Gaussian Processes 2018 Hugh Salimbeni
Ching-An Cheng
Byron Boots
Marc Peter Deisenroth
+ Natural Gradients in Practice: Non-Conjugate Variational Inference in Gaussian Process Models 2018 Hugh Salimbeni
Stefanos Eleftheriadis
James Hensman
+ Doubly Stochastic Variational Inference for Deep Gaussian Processes 2017 Hugh Salimbeni
Marc Peter Deisenroth
+ Doubly Stochastic Variational Inference for Deep Gaussian Processes 2017 Hugh Salimbeni
Marc Peter Deisenroth
+ Deep Unsupervised Clustering with Gaussian Mixture Variational Autoencoders 2016 Nat Dilokthanakul
Pedro A. M. Mediano
Marta Garnelo
Matthew C. H. Lee
Hugh Salimbeni
Kai Arulkumaran
Murray Shanahan
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Gaussian processes for Big data 2013 James Hensman
Nicolò Fusi
Neil D. Lawrence
4
+ Adam: A Method for Stochastic Optimization 2014 Diederik P. Kingma
Jimmy Ba
4
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
3
+ Stochastic variational inference 2013 Matthew D. Hoffman
David M. Blei
Chong Wang
John Paisley
2
+ TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems 2016 Martı́n Abadi
Ashish Agarwal
Paul Barham
Eugene Brevdo
Zhifeng Chen
Craig Citro
Gregory S. Corrado
Andy Davis
Jay B. Dean
Matthieu Devin
2
+ Latent Gaussian Process Regression 2017 Erik Bodin
Carl Henrik Ek
2
+ Gaussian Process Regression with Heteroscedastic or Non-Gaussian Residuals 2012 Chunyi Wang
Radford M. Neal
2
+ Nonparametric Bayesian Density Modeling with Gaussian Processes 2009 Ryan P. Adams
Iain Murray
David Mackay
1
+ Searching for exotic particles in high-energy physics with deep learning 2014 Pierre Baldi
Peter Sadowski
D. Whiteson
1
+ Practical Bayesian Optimization of Machine Learning Algorithms 2012 Jasper Snoek
Hugo Larochelle
Ryan P. Adams
1
+ Generalised Wishart Processes 2010 Andrew Gordon Wilson
Zoubin Ghahramani
1
+ Gaussian Process Volatility Model 2014 Yue Wu
José Miguel Hernández-Lobato
Zoubin Ghahramani
1
+ Unsupervised Deep Embedding for Clustering Analysis 2015 Junyuan Xie
Ross Girshick
Ali Farhadi
1
+ Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks 2015 Jost Tobias Springenberg
1
+ Variational Auto-encoded Deep Gaussian Processes 2015 Zhenwen Dai
Andreas Damianou
Javier González
Neil D. Lawrence
1
+ Generating Sentences from a Continuous Space 2015 Samuel R. Bowman
Luke Vilnis
Oriol Vinyals
Andrew M. Dai
Rafał Józefowicz
Samy Bengio
1
+ Attend, Infer, Repeat: Fast Scene Understanding with Generative Models 2016 S. M. Ali Eslami
Nicolas Heess
Théophane Weber
Yuval Tassa
David Szepesvari
Koray Kavukcuoglu
Geoffrey E. Hinton
1
+ Ladder Variational Autoencoders 2016 Casper Kaae Sønderby
Tapani Raiko
Lars Maaløe
Søren Kaae Sønderby
Ole Winther
1
+ Improving Variational Inference with Inverse Autoregressive Flow 2016 Diederik P. Kingma
Tim Salimans
Rafał Józefowicz
Xi Chen
Ilya Sutskever
Max Welling
1
+ InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets 2016 Xi Chen
Yan Duan
Rein Houthooft
John Schulman
Ilya Sutskever
Pieter Abbeel
1
+ Tagger: Deep Unsupervised Perceptual Grouping 2016 Klaus Greff
Antti Rasmus
Mathias Berglund
Tele Hao
Jürgen Schmidhuber
Harri Valpola
1
+ Composing graphical models with neural networks for structured representations and fast inference 2016 Matthew Johnson
David Duvenaud
Alexander B. Wiltschko
Sandeep Robert Datta
Ryan P. Adams
1
+ Stochastic Backpropagation through Mixture Density Distributions 2016 Alex Graves
1
+ PDF Chat Nested Kriging predictions for datasets with a large number of observations 2017 Didier Rullière
Nicolas Durrande
François Bachoc
Clément Chevalier
1
+ Convolutional Gaussian Processes 2017 Mark van der Wilk
Carl Edward Rasmussen
James Hensman
1
+ Deep Gaussian Processes with Decoupled Inducing Inputs 2018 Marton Havasi
José Miguel Hernández-Lobato
Juan José Murillo-Fuentes
1
+ Inference Suboptimality in Variational Autoencoders 2018 Chris Cremer
Xuechen Li
David Duvenaud
1
+ Natural Gradients in Practice: Non-Conjugate Variational Inference in Gaussian Process Models 2018 Hugh Salimbeni
Stefanos Eleftheriadis
James Hensman
1
+ Inference in Deep Gaussian Processes using Stochastic Gradient Hamiltonian Monte Carlo 2018 Marton Havasi
José Miguel Hernández-Lobato
Juan José Murillo-Fuentes
1
+ Bayesian Optimization using Deep Gaussian Processes 2019 Ali Hebbal
Loïc Brevault
Mathieu Balesdent
El‐Ghazali Talbi
Nouredine Melab
1
+ Neural ODEs with stochastic vector field mixtures 2019 Niall Twomey
Michał Kozłowski
Raúl Santos‐Rodríguez
1
+ Neural Stochastic Differential Equations: Deep Latent Gaussian Models in the Diffusion Limit 2019 Belinda Tzen
Maxim Raginsky
1
+ Neural SDE: Stabilizing Neural ODE Networks with Stochastic Noise 2019 Xuanqing Liu
Tesi Xiao
Si Si
Cao Qin
Sanjiv Kumar
Cho‐Jui Hsieh
1
+ Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks 2015 José Miguel Hernández-Lobato
Ryan P. Adams
1
+ Variational Dropout and the Local Reparameterization Trick 2015 Diederik P. Kingma
Tim Salimans
Max Welling
1
+ Gaussian Processes for Big Data 2013 James Hensman
Nicolò Fusi
Neil D. Lawrence
1
+ Variational Lossy Autoencoder 2016 Xi Chen
Diederik P. Kingma
Tim Salimans
Yan Duan
Prafulla Dhariwal
John Schulman
Ilya Sutskever
Pieter Abbeel
1
+ On the Quantitative Analysis of Decoder-Based Generative Models 2016 Yuhuai Wu
Yuri Burda
Ruslan Salakhutdinov
Roger Grosse
1
+ Deep Gaussian Processes for Regression using Approximate Expectation Propagation 2016 Thang D. Bui
Daniel Hernández-Lobato
Yingzhen Li
José Miguel Hernández-Lobato
Richard E. Turner
1
+ Stochastic Backpropagation and Approximate Inference in Deep Generative Models 2014 Danilo Jimenez Rezende
Shakir Mohamed
Daan Wierstra
1
+ Importance Weighted Autoencoders 2015 Yuri Burda
Roger Grosse
Ruslan Salakhutdinov
1
+ Doubly Reparameterized Gradient Estimators for Monte Carlo Objectives 2019 George Tucker
Dieterich Lawson
Shixiang Gu
Christopher Maddison
1
+ Self-Normalizing Neural Networks 2017 Günter Klambauer
Thomas Unterthiner
Andreas Mayr
Sepp Hochreiter
1
+ Neural ordinary differential equations 2018 Ricky T. Q. Chen
Yulia Rubanova
Jesse Bettencourt
David Duvenaud
1
+ Semi-described and semi-supervised learning with Gaussian processes 2015 Andreas Damianou
Neil D. Lawrence
1
+ Inference in Deep Gaussian Processes using Stochastic Gradient Hamiltonian Monte Carlo 2018 Marton Havasi
José Miguel Hernández-Lobato
Juan José Murillo-Fuentes
1
+ Augmented Neural ODEs 2019 Emilien Dupont
Arnaud Doucet
Yee Whye Teh
1
+ Scalable Bayesian dynamic covariance modeling with variational Wishart and inverse Wishart processes 2019 Creighton Heaukulani
Mark van der Wilk
1
+ Differential Bayesian Neural Nets 2019 Andreas Look
Melih Kandemir
1
+ A Framework for Interdomain and Multioutput Gaussian Processes 2020 Mark van der Wilk
Vincent Dutordoir
St. John
Artem Artemev
Vincent Adam
James Hensman
1