Ryo Kikuchi

Follow

Generating author description...

Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Very Deep Convolutional Networks for Large-Scale Image Recognition 2014 Karen Simonyan
Andrew Zisserman
1
+ On the design and quantification of privacy preserving data mining algorithms 2001 Dakshi Agrawal
Charų C. Aggarwal
1
+ Scikit-learn: Machine Learning in Python 2012 Fabián Pedregosa
Gaël Varoquaux
Alexandre Gramfort
Vincent Michel
Bertrand Thirion
Olivier Grisel
Mathieu Blondel
Peter Prettenhofer
Ron J. Weiss
Vincent Dubourg
1
+ Share Conversion, Pseudorandom Secret-Sharing and Applications to Secure Computation 2005 Ronald Cramer
Ivan Damgård
Yuval Ishai
1
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
1
+ An overview of gradient descent optimization algorithms 2016 Sebastian Ruder
1
+ A framework for privacy preserving statistical analysis on distributed databases 2012 Bing-Rong Lin
Ye Wang
Shantanu Rane
1
+ PDF Chat MOBIUS: Model-Oblivious Binarized Neural Networks 2019 Hiromasa Kitai
Goichiro Hanaoka
Jason Paul Cruz
Naoto Yanai
Naohisa Nishida
Tatsumi Oba
Yuji Unagami
Tadanori Teruya
Nuttapong Attrapadung
Takahiro Matsuda
1
+ Adaptive Gradient Methods with Dynamic Bound of Learning Rate 2019 Liangchen Luo
Yuanhao Xiong
Yan Liu
Xu Sun
1
+ XONN: XNOR-based Oblivious Deep Neural Network Inference 2019 M. Sadegh Riazi
Mohammad Samragh
Hao Chen
Kim Laine
Kristin Lauter
Farinaz Koushanfar
1
+ PDF Chat DeepSecure: Scalable Provably-Secure Deep Learning 2018 Bita Darvish Rouhani
M. Sadegh Riazi
Farinaz Koushanfar
1
+ QUOTIENT: Two-Party Secure Neural Network Training and Prediction 2019 Nitin Agrawal
Ali Shahin Shamsabadi
Matt J. Kusner
Adrià Gascón
1
+ Very Deep Convolutional Networks for Large-Scale Image Recognition 2014 Karen Simonyan
Andrew Zisserman
1
+ Adam: A Method for Stochastic Optimization 2014 Diederik P. Kingma
Jimmy Ba
1
+ BAYHENN: Combining Bayesian Deep Learning and Homomorphic Encryption for Secure DNN Inference 2019 Peichen Xie
Bingzhe Wu
Guangyu Sun
1
+ CrypTFlow: Secure TensorFlow Inference 2019 Nishant Kumar
Mayank Rathee
Nishanth Chandran
Divya Gupta
Aseem Rastogi
Rahul Sharma
1
+ PDF Chat Secure Evaluation of Quantized Neural Networks 2020 Anders Dalskov
Daniel Escudero
Marcel Keller
1
+ Trident: Efficient 4PC Framework for Privacy Preserving Machine Learning 2020 Harsh Chaudhari
Rahul Rachuri
Ajith Suresh
1
+ PDF Chat CrypTFlow: Secure TensorFlow Inference 2020 Nishant Kumar
Mayank Rathee
Nishanth Chandran
Divya Gupta
Aseem Rastogi
Rahul Sharma
1
+ PDF Chat PrivEdge: From Local to Distributed Private Training and Prediction 2020 Ali Shahin Shamsabadi
Adrià Gascón
Hamed Haddadi
Andrea Cavallaro
1
+ SWIFT: Super-fast and Robust Privacy-Preserving Machine Learning 2020 Nishat Koti
Mahak Pancholi
Arpita Patra
Ajith Suresh
1
+ Glyph: Fast and Accurately Training Deep Neural Networks on Encrypted Data 2019 Qian Lou
Bo Feng
Geoffrey Fox
Lei Jiang
1
+ PDF Chat ASTRA 2019 Harsh Chaudhari
Ashish Choudhury
Arpita Patra
Ajith Suresh
1
+ BLAZE: Blazing Fast Privacy-Preserving Machine Learning 2020 Arpita Patra
Ajith Suresh
1
+ PDF Chat Falcon: Honest-Majority Maliciously Secure Framework for Private Deep Learning 2020 Sameer Wagh
Shruti Tople
Fabrice Benhamouda
Eyal Kushilevitz
Prateek Mittal
Tal Rabin
1
+ Effectiveness of MPC-friendly Softmax Replacement 2020 Marcel Keller
Ke Sun
1
+ PDF Chat CryptGPU: Fast Privacy-Preserving Machine Learning on the GPU 2021 Sijun Tan
Brian Knott
Yuan Tian
David J. Wu
1
+ Adaptive Gradient Methods with Dynamic Bound of Learning Rate 2019 Liangchen Luo
Yuanhao Xiong
Yan Liu
Xu Sun
1
+ Gazelle: A Low Latency Framework for Secure Neural Network Inference 2018 Chiraag Juvekar
Vinod Vaikuntanathan
Anantha P. Chandrakasan
1
+ Chameleon: A Hybrid Secure Computation Framework for Machine Learning Applications 2018 M. Sadegh Riazi
Christian Weinert
Oleksandr Tkachenko
Ebrahim M. Songhori
Thomas Schneider
Farinaz Koushanfar
1