Gary Klein

Follow

Generating author description...

Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Explanation in Artificial Intelligence: Insights from the Social Sciences 2017 Tim Miller
2
+ PDF Chat Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization 2017 Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
2
+ Explanation in artificial intelligence: Insights from the social sciences 2018 Tim Miller
2
+ Interpretable and Explorable Approximations of Black Box Models 2017 Himabindu Lakkaraju
Ece Kamar
Rich Caruana
Jure Leskovec
2
+ PDF Chat European Union Regulations on Algorithmic Decision Making and a “Right to Explanation” 2017 Bryce Goodman
Seth Flaxman
2
+ Towards A Rigorous Science of Interpretable Machine Learning 2017 Finale Doshi‐Velez
Been Kim
2
+ What is coefficient alpha? An examination of theory and applications. 1993 José M. Cortina
1
+ Promoting Active Learning 2013 Jennifer A. Strangfeld
1
+ PDF Chat Label-Embedding for Image Classification 2015 Zeynep Akata
Florent Perronnin
Zaïd Harchaoui
Cordelia Schmid
1
+ PDF Chat Generating Visual Explanations 2016 Lisa Anne Hendricks
Zeynep Akata
Marcus Rohrbach
Jeff Donahue
Bernt Schiele
Trevor Darrell
1
+ Toward a general, scaleable framework for Bayesian teaching with applications to topic models 2016 Baxter Eaves
Patrick Shafto
1
+ Model-Agnostic Interpretability of Machine Learning 2016 Marco Túlio Ribeiro
Sameer Singh
Carlos Guestrin
1
+ Concrete Problems in AI Safety 2016 Dario Amodei
Chris Olah
Jacob Steinhardt
Paul F. Christiano
John Schulman
Dan Mané
1
+ Explaining Classification Models Built on High-Dimensional Sparse Data 2016 Julie Moeyersoms
B D'Alessandro
Foster Provost
David Martens
1
+ Interpreting Visual Question Answering Models. 2016 Yash Goyal
Akrit Mohapatra
Devi Parikh
Dhruv Batra
1
+ Episodic Exploration for Deep Deterministic Policies: An Application to StarCraft Micromanagement Tasks 2016 Nicolas Usunier
Gabriel Synnaeve
Zeming Lin
Soumith Chintala
1
+ Rawlsian Fairness for Machine Learning. 2016 Matthew Joseph
Michael Kearns
Jamie Morgenstern
Seth Neel
Aaron Roth
1
+ PDF Chat Making the V in VQA Matter: Elevating the Role of Image Understanding in Visual Question Answering 2017 Yash Goyal
Tejas Khot
Douglas Summers-Stay
Dhruv Batra
Devi Parikh
1
+ A Roadmap for a Rigorous Science of Interpretability. 2017 Finale Doshi‐Velez
Been Kim
1
+ Opening the Black Box of Deep Neural Networks via Information 2017 Ravid Shwartz-Ziv
Naftali Tishby
1
+ Understanding Black-box Predictions via Influence Functions 2017 Pang Wei Koh
Percy Liang
1
+ PDF Chat Explaining the Unexplained: A CLass-Enhanced Attentive Response (CLEAR) Approach to Understanding Deep Neural Networks 2017 Devinder Kumar
Alexander Wong
Graham W. Taylor
1
+ What Does Explainable AI Really Mean? A New Conceptualization of Perspectives 2017 Derek Doran
Sarah Schulz
Tarek R. Besold
1
+ Deep Learning: A Critical Appraisal 2018 Gary Marcus
1
+ How do Humans Understand Explanations from Machine Learning Systems? An Evaluation of the Human-Interpretability of Explanation. 2018 Menaka Narayanan
Emily Chen
Jeffrey He
Been Kim
Sam Gershman
Finale Doshi‐Velez
1
+ Explainable artificial intelligence (XAI), the goodness criteria and the grasp-ability test. 2018 Tae Wan Kim
1
+ Metrics for Explainable AI: Challenges and Prospects. 2018 Robert R. Hoffman
Shane T. Mueller
Gary Klein
Jordan A. Litman
1
+ Multi-Agent Cooperation and the Emergence of (Natural) Language 2016 Angeliki Lazaridou
Alexander Peysakhovich
Marco Baroni
1
+ "Why Should I Trust You?": Explaining the Predictions of Any Classifier 2016 Marco Túlio Ribeiro
Sameer Singh
Carlos Guestrin
1
+ PDF Chat Towards Accountable AI: Hybrid Human-Machine Analyses for Characterizing System Failure 2018 Besmira Nushi
Ece Kamar
Eric Horvitz
1
+ PDF Chat On Human Intellect and Machine Failures: Troubleshooting Integrative Machine Learning Systems 2017 Besmira Nushi
Ece Kamar
Eric Horvitz
Donald Kossmann
1
+ PDF Chat On the Safety of Machine Learning: Cyber-Physical Systems, Decision Sciences, and Data Products 2017 Kush R. Varshney
Homa Alemzadeh
1
+ Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps 2013 Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
1
+ PDF Chat Learning to Reason: End-to-End Module Networks for Visual Question Answering 2017 Ronghang Hu
Jacob Andreas
Marcus Rohrbach
Trevor Darrell
Kate Saenko
1
+ PDF Chat Rationalizing Neural Predictions 2016 Tao Leí
Regina Barzilay
Tommi Jaakkola
1
+ Striving for Simplicity: The All Convolutional Net 2014 Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
1
+ PDF Chat Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding 2016 Akira Fukui
Dong Huk Park
Daylen Yang
Anna Rohrbach
Trevor Darrell
Marcus Rohrbach
1
+ Natural Language Generation enhances human decision-making with uncertain information 2016 Dimitra Gkatzia
Oliver Lemon
Verena Rieser
1
+ Right for the Right Reasons: Training Differentiable Models by Constraining their Explanations 2017 Andrew Slavin Ross
Michael C. Hughes
Finale Doshi‐Velez
1
+ PDF Chat Explaining Explanations: An Overview of Interpretability of Machine Learning 2018 Leilani H. Gilpin
David Bau
Ben Z. Yuan
Ayesha Bajwa
Michael A. Specter
Lalana Kagal
1
+ A note on the evaluation of generative models 2015 Lucas Theis
Aäron van den Oord
Matthias Bethge
1
+ PDF Chat Visualizing and Understanding Neural Models in NLP 2016 Jiwei Li
Xinlei Chen
Eduard Hovy
Dan Jurafsky
1
+ PDF Chat On Generating Plausible Counterfactual and Semi-Factual Explanations for Deep Learning 2021 Eoin M. Kenny
Mark T. Keane
1
+ PDF Chat A Survey on Bayesian Deep Learning 2020 Hao Wang
Dit‐Yan Yeung
1
+ Explaining AI as an Exploratory Process: The Peircean Abduction Model 2020 Robert R. Hoffman
William J. Clancey
Shane T. Mueller
1
+ PDF Chat Accountability of AI Under the Law: The Role of Explanation 2017 Finale Doshi‐Velez
Mason A. Kortz
Ryan Budish
Christopher Bavitz
Samuel J. Gershman
David F. O’Brien
Kate Scott
Stuart M. Shieber
Jim Waldo
David Weinberger
1
+ Principles of Explanation in Human-AI Systems 2021 Shane T. Mueller
Elizabeth S. Veinott
Robert R. Hoffman
Gary Klein
Lamia Alam
Tauseef Ibne Mamun
William J. Clancey
1
+ Towards AI-Complete Question Answering: A Set of Prerequisite Toy Tasks 2015 Jason Weston
Antoine Bordes
Sumit Chopra
Alexander M. Rush
Bart van Merriënboer
Armand Joulin
Tomáš Mikolov
1
+ On the Robustness of Most Probable Explanations 2012 Hei Chan
Adnan Darwiche
1
+ Distilling the Knowledge in a Neural Network 2015 Geoffrey E. Hinton
Oriol Vinyals
Jay B. Dean
1