Saurabh Johri

Follow

Generating author description...

All published works
Action Title Year Authors
+ Learning medical triage from clinicians using Deep Q-Learning. 2020 Albert Buchard
Baptiste Bouvier
Giulia Prando
Rory Beard
Michail Livieratos
Dan Busbridge
Daniel H. Thompson
Jonathan G. Richens
Yuanzhao Zhang
Adam Baker
+ Masking schemes for universal marginalisers 2020 Divya Gautam
María Lomelí
Kostis Gourgoulias
Daniel H. Thompson
Saurabh Johri
+ Learning medical triage from clinicians using Deep Q-Learning 2020 Albert Buchard
Baptiste Bouvier
Giulia Prando
Rory Beard
Michail Livieratos
Dan Busbridge
Daniel B. Thompson
Jonathan G. Richens
Yuanzhao Zhang
Adam Baker
+ Leveraging directed causal discovery to detect latent common causes. 2019 Ciarán M. Lee
Christopher D. Hart
Jonathan G. Richens
Saurabh Johri
+ Counterfactual diagnosis. 2019 Jonathan G. Richens
Ciaran M. Lee
Saurabh Johri
+ Universal Marginaliser for Deep Amortised Inference for Probabilistic Programs 2019 Robert Walecki
Kostis Gourgoulias
Adam Baker
Chris Hart
Chris Lucas
Max Zwiessele
Albert Buchard
María Lomelí
Yura Perov
Saurabh Johri
+ MultiVerse: Causal Reasoning using Importance Sampling in Probabilistic Programming 2019 Yura Perov
Logan Graham
Kostis Gourgoulias
Jonathan G. Richens
Ciarán M. Lee
Adam Baker
Saurabh Johri
+ Counterfactual diagnosis 2019 Jonathan G. Richens
Ciaran M. Lee
Saurabh Johri
+ Leveraging directed causal discovery to detect latent common causes 2019 Ciarán M. Lee
Christopher Hart
Jonathan G. Richens
Saurabh Johri
+ A comparative study of artificial intelligence and human doctors for the purpose of triage and diagnosis 2018 Salman Razzaki
Adam Baker
Yura Perov
Katherine Middleton
Janie Baxter
Daniel Mullarkey
Davinder Sangar
Michael Taliercio
Mobasher Butt
Azeem Majeed
+ Universal Marginalizer for Amortised Inference and Embedding of Generative Models 2018 Robert Walecki
Albert Buchard
Kostis Gourgoulias
Chris Hart
María Lomelí
Alexandre K. W. Navarro
Max Zwiessele
Yura Perov
Saurabh Johri
+ A comparative study of artificial intelligence and human doctors for the purpose of triage and diagnosis 2018 Salman Razzaki
Adam Baker
Yura Perov
Katherine Middleton
Janie Baxter
Daniel J. Mullarkey
Davinder Sangar
Michael Taliercio
Mobasher Butt
Azeem Majeed
+ A Universal Marginalizer for Amortized Inference in Generative Models. 2017 Laura Douglas
Iliyan Zarov
Konstantinos Gourgoulias
Chris Lucas
Chris Hart
Adam Baker
Maneesh Sahani
Yura Perov
Saurabh Johri
+ A Universal Marginalizer for Amortized Inference in Generative Models 2017 Laura Douglas
Iliyan Zarov
Konstantinos Gourgoulias
Chris Lucas
Chris Hart
Adam Baker
Maneesh Sahani
Yura Perov
Saurabh Johri
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Deep Amortized Inference for Probabilistic Programs 2016 Daniel Ritchie
Paul Horsfall
Noah D. Goodman
3
+ MADE: Masked Autoencoder for Distribution Estimation 2015 Mathieu Germain
Karol Gregor
Iain Murray
Hugo Larochelle
3
+ PDF Chat Using synthetic data to train neural networks is model-based reasoning 2017 Tuan Anh Le
Atılım Güneş Baydin
Robert Zinkov
Frank Wood
3
+ Applications of Probabilistic Programming (Master's thesis, 2015) 2016 Yura Perov
2
+ Counterfactual diagnosis. 2019 Jonathan G. Richens
Ciaran M. Lee
Saurabh Johri
2
+ An empirical analysis of likelihood-weighting simulation on a large, multiply connected medical belief network 1991 Michael Shwe
Gregory F. Cooper
2
+ Inference Compilation and Universal Probabilistic Programming 2016 Tuan Anh Le
Atılım Güneş Baydin
Frank Wood
2
+ PDF Chat AIS-BN: An Adaptive Importance Sampling Algorithm for Evidential Reasoning in Large Bayesian Networks 2000 J.-J. Cheng
Marek J. Drużdżel
2
+ Data-driven Sequential Monte Carlo in Probabilistic Programming 2015 Yura Perov
Tuan Anh Le
Frank Wood
2
+ Universal Marginalizer for Amortised Inference and Embedding of Generative Models 2018 Robert Walecki
Albert Buchard
Kostis Gourgoulias
Chris Hart
María Lomelí
Alexandre K. W. Navarro
Max Zwiessele
Yura Perov
Saurabh Johri
2
+ Learning about an exponential amount of conditional distributions 2019 Mohamed Ishmael Belghazi
Maxime Oquab
Yann LeCun
David López-Paz
2
+ Pyro: Deep Universal Probabilistic Programming 2018 Eli Bingham
Jonathan P. Chen
Martin Jankowiak
Fritz Obermeyer
Neeraj Pradhan
Theofanis Karaletsos
Rohit Singh
Paul Szerlip
Paul Horsfall
Noah D. Goodman
2
+ A Compilation Target for Probabilistic Programming Languages 2014 Brooks Paige
Frank Wood
1
+ PDF Chat Quantum Common Causes and Quantum Causal Models 2017 John-Mark A. Allen
Jonathan Barrett
Dominic Horsman
Ciarán M. Lee
Robert W. Spekkens
1
+ Causal Inference via Algebraic Geometry: Feasibility Tests for Functional Causal Structures with Two Binary Observed Variables 2017 Ciarán M. Lee
Robert W. Spekkens
1
+ Counterfactual Fairness 2017 Matt J. Kusner
Joshua R. Loftus
Chris Russell
Ricardo Silva
1
+ Reliable Decision Support using Counterfactual Models 2017 Peter Schulam
Suchi Saria
1
+ Local Rule-Based Explanations of Black Box Decision Systems. 2018 Riccardo Guidotti
Anna Monreale
Salvatore Ruggieri
Dino Pedreschi
Franco Turini
Fosca Giannotti
1
+ An Introduction to Probabilistic Programming 2018 Jan-Willem van de Meent
Brooks Paige
Hongseok Yang
Frank Wood
1
+ Simple, Distributed, and Accelerated Probabilistic Programming 2018 Dustin Tran
Matthew D. Hoffman
Dave Moore
Christopher Suter
Vasudevan Srinivas
Alexey Radul
Matthew Johnson
Rif A. Saurous
1
+ PDF Chat We Are Not Your Real Parents: Telling Causal from Confounded using MDL 2019 David Kaltenpoth
Jilles Vreeken
1
+ Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift 2015 Sergey Ioffe
Christian Szegedy
1
+ Counterfactual Risk Minimization: Learning from Logged Bandit Feedback 2015 Adith Swaminathan
Thorsten Joachims
1
+ Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations 2018 Francesco Locatello
Stefan Bauer
Mario Lučić
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
1
+ Design and Implementation of Probabilistic Programming Language Anglican 2016 David Tolpin
Jan Willem van de Meent
Hongseok Yang
Frank Wood
1
+ Church: a language for generative models 2012 Noah D. Goodman
Vikash K. Mansinghka
Daniel M. Roy
Keith Bonawitz
Joshua B. Tenenbaum
1
+ MADE: Masked Autoencoder for Distribution Estimation 2015 Mathieu Germain
Karol Gregor
Iain Murray
Hugo Larochelle
1
+ Attention is All you Need 2017 Ashish Vaswani
Noam Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan N. Gomez
Łukasz Kaiser
Illia Polosukhin
1
+ Simple, Distributed, and Accelerated Probabilistic Programming 2018 Dustin Tran
Matthew W. Hoffman
Dave Moore
Christopher Suter
Vasudevan Srinivas
Alexey Radul
1
+ Self-Normalizing Neural Networks 2017 Günter Klambauer
Thomas Unterthiner
Andreas Mayr
Sepp Hochreiter
1
+ Prioritized Experience Replay 2015 Tom Schaul
John Quan
Ioannis Antonoglou
David Silver
1
+ Woulda, Coulda, Shoulda: Counterfactually-Guided Policy Search 2018 Lars Buesing
Théophane Weber
Yori Zwólš
Nicolas Heess
Sébastien Racanière
Arthur Guez
Jean-Baptiste Lespiau
1
+ PDF Chat Counterfactual Learning from Bandit Feedback under Deterministic Logging : A Case Study in Statistical Machine Translation 2017 Carolin Lawrence
Artem Sokolov
Stefan Riezler
1
+ Causal Inference via Kernel Deviance Measures 2018 Jovana Mitrovic
Dino Sejdinović
Yee Whye Teh
1
+ Learning Representations for Counterfactual Inference 2016 Fredrik Johansson
Uri Shalit
David Sontag
1
+ PDF Chat Theoretical Impediments to Machine Learning With Seven Sparks from the Causal Revolution 2018 Judea Pearl
1
+ Reinforcement Learning in Healthcare: A Survey 2019 Chao Yu
Jiming Liu
Shamim Nemati
1
+ MultiVerse: Causal Reasoning using Importance Sampling in Probabilistic Programming 2019 Yura Perov
Logan Graham
Kostis Gourgoulias
Jonathan G. Richens
Ciarán M. Lee
Adam Baker
Saurabh Johri
1
+ PDF Chat Offline A/B Testing for Recommender Systems 2018 Alexandre Gilotte
Clément Calauzènes
Thomas Nedelec
Alexandre Abraham
Simon Dollé
1
+ PDF Chat The Inflation Technique for Causal Inference with Latent Variables 2019 Elie Wolfe
Robert W. Spekkens
T. A. Fritz
1
+ PDF Chat Device-independent certification of non-classical joint measurements via causal models 2019 Ciarán M. Lee
1
+ PDF Chat Variational Probabilistic Inference and the QMR-DT Network 1999 Tommi Jaakkola
Michael I. Jordan
1
+ PDF Chat Counterfactual Estimation and Optimization of Click Metrics in Search Engines 2015 Lihong Li
Shunbao Chen
Jim Kleban
Ankur Gupta
1
+ Counterfactual Explanations without Opening the Black Box: Automated Decisions and the Gdpr 2018 Sandra Wachter
Brent Mittelstadt
Chris Russell
1
+ None 2001 Radford M. Neal
1
+ Loopy belief propagation for approximate inference: an empirical study 1999 Kevin P. Murphy
Yair Weiss
Michael I. Jordan
1
+ Towards a Learning Theory of Cause-Effect Inference 2015 David López-Paz
Krikamol Muandet
Bernhard Schölkopf
Ilya Tolstikhin
1
+ Identifying confounders using additive noise models 2009 Dominik Janzing
Jonas Peters
Joris M. Mooij
Bernhard Schölkopf
1
+ Venture: a higher-order probabilistic programming platform with programmable inference 2014 Vikash K. Mansinghka
Daniel Selsam
Yura Perov
1
+ Distinguishing cause from effect using observational data: methods and benchmarks 2016 Joris M. Mooij
Jonas Peters
Dominik Janzing
Jakob Zscheischler
Bernhard Schölkopf
1