Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Saurabh Johri
Follow
Share
Generating author description...
All published works
Action
Title
Year
Authors
+
Learning medical triage from clinicians using Deep Q-Learning.
2020
Albert Buchard
Baptiste Bouvier
Giulia Prando
Rory Beard
Michail Livieratos
Dan Busbridge
Daniel H. Thompson
Jonathan G. Richens
Yuanzhao Zhang
Adam Baker
+
Masking schemes for universal marginalisers
2020
Divya Gautam
María Lomelí
Kostis Gourgoulias
Daniel H. Thompson
Saurabh Johri
+
Learning medical triage from clinicians using Deep Q-Learning
2020
Albert Buchard
Baptiste Bouvier
Giulia Prando
Rory Beard
Michail Livieratos
Dan Busbridge
Daniel B. Thompson
Jonathan G. Richens
Yuanzhao Zhang
Adam Baker
+
Leveraging directed causal discovery to detect latent common causes.
2019
Ciarán M. Lee
Christopher D. Hart
Jonathan G. Richens
Saurabh Johri
+
Counterfactual diagnosis.
2019
Jonathan G. Richens
Ciaran M. Lee
Saurabh Johri
+
Universal Marginaliser for Deep Amortised Inference for Probabilistic Programs
2019
Robert Walecki
Kostis Gourgoulias
Adam Baker
Chris Hart
Chris Lucas
Max Zwiessele
Albert Buchard
María Lomelí
Yura Perov
Saurabh Johri
+
MultiVerse: Causal Reasoning using Importance Sampling in Probabilistic Programming
2019
Yura Perov
Logan Graham
Kostis Gourgoulias
Jonathan G. Richens
Ciarán M. Lee
Adam Baker
Saurabh Johri
+
Counterfactual diagnosis
2019
Jonathan G. Richens
Ciaran M. Lee
Saurabh Johri
+
Leveraging directed causal discovery to detect latent common causes
2019
Ciarán M. Lee
Christopher Hart
Jonathan G. Richens
Saurabh Johri
+
A comparative study of artificial intelligence and human doctors for the purpose of triage and diagnosis
2018
Salman Razzaki
Adam Baker
Yura Perov
Katherine Middleton
Janie Baxter
Daniel Mullarkey
Davinder Sangar
Michael Taliercio
Mobasher Butt
Azeem Majeed
+
Universal Marginalizer for Amortised Inference and Embedding of Generative Models
2018
Robert Walecki
Albert Buchard
Kostis Gourgoulias
Chris Hart
María Lomelí
Alexandre K. W. Navarro
Max Zwiessele
Yura Perov
Saurabh Johri
+
A comparative study of artificial intelligence and human doctors for the purpose of triage and diagnosis
2018
Salman Razzaki
Adam Baker
Yura Perov
Katherine Middleton
Janie Baxter
Daniel J. Mullarkey
Davinder Sangar
Michael Taliercio
Mobasher Butt
Azeem Majeed
+
A Universal Marginalizer for Amortized Inference in Generative Models.
2017
Laura Douglas
Iliyan Zarov
Konstantinos Gourgoulias
Chris Lucas
Chris Hart
Adam Baker
Maneesh Sahani
Yura Perov
Saurabh Johri
+
A Universal Marginalizer for Amortized Inference in Generative Models
2017
Laura Douglas
Iliyan Zarov
Konstantinos Gourgoulias
Chris Lucas
Chris Hart
Adam Baker
Maneesh Sahani
Yura Perov
Saurabh Johri
Common Coauthors
Coauthor
Papers Together
Yura Perov
9
Jonathan G. Richens
7
Kostis Gourgoulias
6
Adam Baker
5
Albert Buchard
4
Chris Hart
3
Ciarán M. Lee
3
Adam Baker
3
María Lomelí
3
Michail Livieratos
2
Baptiste Bouvier
2
Michael Taliercio
2
Megan Mahoney
2
Azeem Majeed
2
Yuanzhao Zhang
2
Katherine Middleton
2
Max Zwiessele
2
Iliyan Zarov
2
Maneesh Sahani
2
Laura Douglas
2
Davinder Sangar
2
Dan Busbridge
2
Janie Baxter
2
Rory Beard
2
Robert Walecki
2
Konstantinos Gourgoulias
2
Arnold DoRosario
2
Chris Lucas
2
Giulia Prando
2
Ciaran M. Lee
2
Daniel H. Thompson
1
Mobasher Butt
1
Chris Lucas
1
Chris Hart
1
Salman Razzaki
1
Logan Graham
1
Christopher D. Hart
1
Alexandre K. W. Navarro
1
Daniel B. Thompson
1
Mobasher Butt
1
Salman Razzaki
1
Daniel Mullarkey
1
Christopher Hart
1
Daniel J. Mullarkey
1
Daniel H. Thompson
1
Divya Gautam
1
Commonly Cited References
Action
Title
Year
Authors
# of times referenced
+
Deep Amortized Inference for Probabilistic Programs
2016
Daniel Ritchie
Paul Horsfall
Noah D. Goodman
3
+
MADE: Masked Autoencoder for Distribution Estimation
2015
Mathieu Germain
Karol Gregor
Iain Murray
Hugo Larochelle
3
+
PDF
Chat
Using synthetic data to train neural networks is model-based reasoning
2017
Tuan Anh Le
Atılım Güneş Baydin
Robert Zinkov
Frank Wood
3
+
Applications of Probabilistic Programming (Master's thesis, 2015)
2016
Yura Perov
2
+
Counterfactual diagnosis.
2019
Jonathan G. Richens
Ciaran M. Lee
Saurabh Johri
2
+
An empirical analysis of likelihood-weighting simulation on a large, multiply connected medical belief network
1991
Michael Shwe
Gregory F. Cooper
2
+
Inference Compilation and Universal Probabilistic Programming
2016
Tuan Anh Le
Atılım Güneş Baydin
Frank Wood
2
+
PDF
Chat
AIS-BN: An Adaptive Importance Sampling Algorithm for Evidential Reasoning in Large Bayesian Networks
2000
J.-J. Cheng
Marek J. Drużdżel
2
+
Data-driven Sequential Monte Carlo in Probabilistic Programming
2015
Yura Perov
Tuan Anh Le
Frank Wood
2
+
Universal Marginalizer for Amortised Inference and Embedding of Generative Models
2018
Robert Walecki
Albert Buchard
Kostis Gourgoulias
Chris Hart
María Lomelí
Alexandre K. W. Navarro
Max Zwiessele
Yura Perov
Saurabh Johri
2
+
Learning about an exponential amount of conditional distributions
2019
Mohamed Ishmael Belghazi
Maxime Oquab
Yann LeCun
David López-Paz
2
+
Pyro: Deep Universal Probabilistic Programming
2018
Eli Bingham
Jonathan P. Chen
Martin Jankowiak
Fritz Obermeyer
Neeraj Pradhan
Theofanis Karaletsos
Rohit Singh
Paul Szerlip
Paul Horsfall
Noah D. Goodman
2
+
A Compilation Target for Probabilistic Programming Languages
2014
Brooks Paige
Frank Wood
1
+
PDF
Chat
Quantum Common Causes and Quantum Causal Models
2017
John-Mark A. Allen
Jonathan Barrett
Dominic Horsman
Ciarán M. Lee
Robert W. Spekkens
1
+
Causal Inference via Algebraic Geometry: Feasibility Tests for Functional Causal Structures with Two Binary Observed Variables
2017
Ciarán M. Lee
Robert W. Spekkens
1
+
Counterfactual Fairness
2017
Matt J. Kusner
Joshua R. Loftus
Chris Russell
Ricardo Silva
1
+
Reliable Decision Support using Counterfactual Models
2017
Peter Schulam
Suchi Saria
1
+
Local Rule-Based Explanations of Black Box Decision Systems.
2018
Riccardo Guidotti
Anna Monreale
Salvatore Ruggieri
Dino Pedreschi
Franco Turini
Fosca Giannotti
1
+
An Introduction to Probabilistic Programming
2018
Jan-Willem van de Meent
Brooks Paige
Hongseok Yang
Frank Wood
1
+
Simple, Distributed, and Accelerated Probabilistic Programming
2018
Dustin Tran
Matthew D. Hoffman
Dave Moore
Christopher Suter
Vasudevan Srinivas
Alexey Radul
Matthew Johnson
Rif A. Saurous
1
+
PDF
Chat
We Are Not Your Real Parents: Telling Causal from Confounded using MDL
2019
David Kaltenpoth
Jilles Vreeken
1
+
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
2015
Sergey Ioffe
Christian Szegedy
1
+
Counterfactual Risk Minimization: Learning from Logged Bandit Feedback
2015
Adith Swaminathan
Thorsten Joachims
1
+
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations
2018
Francesco Locatello
Stefan Bauer
Mario Lučić
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
1
+
Design and Implementation of Probabilistic Programming Language Anglican
2016
David Tolpin
Jan Willem van de Meent
Hongseok Yang
Frank Wood
1
+
Church: a language for generative models
2012
Noah D. Goodman
Vikash K. Mansinghka
Daniel M. Roy
Keith Bonawitz
Joshua B. Tenenbaum
1
+
MADE: Masked Autoencoder for Distribution Estimation
2015
Mathieu Germain
Karol Gregor
Iain Murray
Hugo Larochelle
1
+
Attention is All you Need
2017
Ashish Vaswani
Noam Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan N. Gomez
Łukasz Kaiser
Illia Polosukhin
1
+
Simple, Distributed, and Accelerated Probabilistic Programming
2018
Dustin Tran
Matthew W. Hoffman
Dave Moore
Christopher Suter
Vasudevan Srinivas
Alexey Radul
1
+
Self-Normalizing Neural Networks
2017
Günter Klambauer
Thomas Unterthiner
Andreas Mayr
Sepp Hochreiter
1
+
Prioritized Experience Replay
2015
Tom Schaul
John Quan
Ioannis Antonoglou
David Silver
1
+
Woulda, Coulda, Shoulda: Counterfactually-Guided Policy Search
2018
Lars Buesing
Théophane Weber
Yori Zwólš
Nicolas Heess
Sébastien Racanière
Arthur Guez
Jean-Baptiste Lespiau
1
+
PDF
Chat
Counterfactual Learning from Bandit Feedback under Deterministic Logging : A Case Study in Statistical Machine Translation
2017
Carolin Lawrence
Artem Sokolov
Stefan Riezler
1
+
Causal Inference via Kernel Deviance Measures
2018
Jovana Mitrovic
Dino Sejdinović
Yee Whye Teh
1
+
Learning Representations for Counterfactual Inference
2016
Fredrik Johansson
Uri Shalit
David Sontag
1
+
PDF
Chat
Theoretical Impediments to Machine Learning With Seven Sparks from the Causal Revolution
2018
Judea Pearl
1
+
Reinforcement Learning in Healthcare: A Survey
2019
Chao Yu
Jiming Liu
Shamim Nemati
1
+
MultiVerse: Causal Reasoning using Importance Sampling in Probabilistic Programming
2019
Yura Perov
Logan Graham
Kostis Gourgoulias
Jonathan G. Richens
Ciarán M. Lee
Adam Baker
Saurabh Johri
1
+
PDF
Chat
Offline A/B Testing for Recommender Systems
2018
Alexandre Gilotte
Clément Calauzènes
Thomas Nedelec
Alexandre Abraham
Simon Dollé
1
+
PDF
Chat
The Inflation Technique for Causal Inference with Latent Variables
2019
Elie Wolfe
Robert W. Spekkens
T. A. Fritz
1
+
PDF
Chat
Device-independent certification of non-classical joint measurements via causal models
2019
Ciarán M. Lee
1
+
PDF
Chat
Variational Probabilistic Inference and the QMR-DT Network
1999
Tommi Jaakkola
Michael I. Jordan
1
+
PDF
Chat
Counterfactual Estimation and Optimization of Click Metrics in Search Engines
2015
Lihong Li
Shunbao Chen
Jim Kleban
Ankur Gupta
1
+
Counterfactual Explanations without Opening the Black Box: Automated Decisions and the Gdpr
2018
Sandra Wachter
Brent Mittelstadt
Chris Russell
1
+
None
2001
Radford M. Neal
1
+
Loopy belief propagation for approximate inference: an empirical study
1999
Kevin P. Murphy
Yair Weiss
Michael I. Jordan
1
+
Towards a Learning Theory of Cause-Effect Inference
2015
David López-Paz
Krikamol Muandet
Bernhard Schölkopf
Ilya Tolstikhin
1
+
Identifying confounders using additive noise models
2009
Dominik Janzing
Jonas Peters
Joris M. Mooij
Bernhard Schölkopf
1
+
Venture: a higher-order probabilistic programming platform with programmable inference
2014
Vikash K. Mansinghka
Daniel Selsam
Yura Perov
1
+
Distinguishing cause from effect using observational data: methods and benchmarks
2016
Joris M. Mooij
Jonas Peters
Dominik Janzing
Jakob Zscheischler
Bernhard Schölkopf
1