Projects
Reading
People
Chat
SU\G
(đž)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Mikhail Isaev
Follow
Share
Generating author description...
All published works
Action
Title
Year
Authors
+
Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation
2020
Hao Wu
Patrick Judd
Xiaojie Zhang
Mikhail Isaev
Paulius Micikevicius
Common Coauthors
Coauthor
Papers Together
Paulius Micikevicius
1
Patrick Judd
1
Xiaojie Zhang
1
Hao Wu
1
Commonly Cited References
Action
Title
Year
Authors
# of times referenced
+
Low precision storage for deep learning
2014
Matthieu Courbariaux
Yoshua Bengio
JeanâPierre David
1
+
cuDNN: Efficient Primitives for Deep Learning
2014
Sharan Chetlur
Cliff Woolley
Philippe Vandermersch
Jonathan Cohen
John Tran
Bryan Catanzaro
Evan Shelhamer
1
+
Training deep neural networks with low precision multiplications
2014
Matthieu Courbariaux
Yoshua Bengio
JeanâPierre David
1
+
PDF
Chat
ImageNet Large Scale Visual Recognition Challenge
2015
Olga Russakovsky
Jia Deng
Hao Su
Jonathan Krause
Sanjeev Satheesh
Sean Ma
Zhiheng Huang
Andrej Karpathy
Aditya Khosla
Michael S. Bernstein
1
+
PDF
Chat
Rethinking the Inception Architecture for Computer Vision
2016
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jon Shlens
Zbigniew Wojna
1
+
PDF
Chat
Deep Residual Learning for Image Recognition
2016
Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
1
+
Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation
2013
Yoshua Bengio
Nicholas LĂ©onard
Aaron Courville
1
+
PDF
Chat
XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks
2016
Mohammad Rastegari
Vicente Ordóñez
Joseph Redmon
Ali Farhadi
1
+
Bridging Nonlinearities and Stochastic Regularizers with Gaussian Error Linear Units
2016
Dan Hendrycks
Kevin Gimpel
1
+
DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients
2016
Shuchang Zhou
Yuxin Wu
Zekun Ni
Xinyu Zhou
He Wen
Yuheng Zou
1
+
Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation
2016
Yonghui Wu
Mike Schuster
Zhifeng Chen
Quoc V. Le
Mohammad Norouzi
Wolfgang Macherey
Maxim Krikun
Yuan Cao
Qin Gao
Klaus Macherey
1
+
PDF
Chat
Aggregated Residual Transformations for Deep Neural Networks
2017
Saining Xie
Ross Girshick
Piotr DollĂĄr
Zhuowen Tu
Kaiming He
1
+
Trained Ternary Quantization
2016
Chenzhuo Zhu
Song Han
Huizi Mao
William J. Dally
1
+
In-Datacenter Performance Analysis of a Tensor Processing Unit
2017
Norman P. Jouppi
Cliff Young
Nishant Patil
David A. Patterson
Gaurav Agrawal
Raminder Bajwa
S. C. Bates
Suresh Bhatia
Nan Boden
Al Borchers
1
+
Ternary Neural Networks with Fine-Grained Quantization
2017
Naveen Mellempudi
Abhisek Kundu
Dheevatsa Mudigere
Dipankar Das
Bharat Kaul
Pradeep Dubey
1
+
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
2017
Andrew Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
Marco Andreetto
Hartwig Adam
1
+
Mixed Precision Training
2017
Paulius Micikevicius
Sharan Narang
Jonah Alben
Gregory Diamos
Erich Elsen
David GarcĂa
Boris Ginsburg
Michael Houston
Oleksii Kuchaiev
Ganesh Venkatesh
1
+
Searching for Activation Functions
2017
Prajit Ramachandran
Barret Zoph
Quoc V. Le
1
+
Three Factors Influencing Minima in SGD
2017
StanisĆaw JastrzÈ©bski
Zachary Kenton
Devansh Arpit
Nicolas Ballas
Asja Fischer
Yoshua Bengio
Amos Storkey
1
+
Apprentice: Using Knowledge Distillation Techniques To Improve Low-Precision Network Accuracy
2017
Asit K. Mishra
Debbie Marr
1
+
PACT: Parameterized Clipping Activation for Quantized Neural Networks
2018
Jungwook Choi
Zhuo Wang
Swagath Venkataramani
Pierce Chuang
Vijayalakshmi Srinivasan
Kailash Gopalakrishnan
1
+
Model compression via distillation and quantization
2018
Antonio Polino
Razvan Pascanu
Dan Alistarh
1
+
Marian: Cost-effective High-Quality Neural Machine Translation in C++
2018
Marcin Junczys-Dowmunt
Kenneth Heafield
Hieu Hoang
Roman Grundkiewicz
Anthony Aue
1
+
Retraining-Based Iterative Weight Quantization for Deep Neural Networks
2018
Dongsoo Lee
Byeongwook Kim
1
+
Quantizing deep convolutional networks for efficient inference: A whitepaper
2018
Raghuraman Krishnamoorthi
1
+
Discovering Low-Precision Networks Close to Full-Precision Networks for Efficient Embedded Inference
2018
Jeffrey L. McKinstry
Steven K. Esser
Rathinakumar Appuswamy
Deepika Bablani
John V. Arthur
Izzet B. Yildiz
Dharmendra S. Modha
1
+
Gaussian Error Linear Units (GELUs)
2016
Dan Hendrycks
Kevin Gimpel
1
+
Image Classification at Supercomputer Scale
2018
Chris Ying
Sameer Kumar
Dehao Chen
Tao Wang
Youlong Cheng
1
+
Stochastic Gradient Methods with Layer-wise Adaptive Moments for Training of Deep Networks
2019
Boris Ginsburg
Patrice Castonguay
Oleksii Hrinchuk
Oleksii Kuchaiev
Vitaly Lavrukhin
R. Bret Leary
Jason Li
Huyen Nguyen
Jonathan Cohen
1
+
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
2019
Mingxing Tan
Quoc V. Le
1
+
Efficient 8-Bit Quantization of Transformer Neural Machine Language Translation Model.
2019
Aishwarya Bhandare
Vamsi Sripathi
Deepthi Karkada
Vivek Menon
Sun Choi
Kushal Datta
Vikram A. Saletore
1
+
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
2015
Sergey Ioffe
Christian Szegedy
1
+
Extremely Low Bit Neural Network: Squeeze the Last Bit Out with ADMM
2017
Cong Leng
Hao Li
Shenghuo Zhu
Rong Jin
1
+
PDF
Chat
MobileNetV2: Inverted Residuals and Linear Bottlenecks
2018
Mark Sandler
Andrew Howard
Menglong Zhu
Andrey Zhmoginov
Liang-Chieh Chen
1
+
PDF
Chat
Focal Loss for Dense Object Detection
2017
Tsung-Yi Lin
Priya Goyal
Ross Girshick
Kaiming He
Piotr DollĂĄr
1
+
Attention is All you Need
2017
Ashish Vaswani
Noam Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan N. Gomez
Ćukasz Kaiser
Illia Polosukhin
1
+
PDF
Chat
Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
2017
Christian Szegedy
Sergey Ioffe
Vincent Vanhoucke
Alexander A. Alemi
1
+
PyTorch: An Imperative Style, High-Performance Deep Learning Library
2019
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
Gregory Chanan
Trevor Killeen
Zeming Lin
Natalia Gimelshein
Luca Antiga
1
+
Trained Quantization Thresholds for Accurate and Efficient Fixed-Point Inference of Deep Neural Networks
2019
Sambhav R. Jain
Albert Gural
Michael Wu
Chris Dick
1
+
Q8BERT: Quantized 8Bit BERT
2019
Ofir Zafrir
Guy Boudoukh
Peter Izsak
Moshe Wasserblat
1
+
PDF
Chat
Data-Free Quantization Through Weight Equalization and Bias Correction
2019
Markus Nagel
Mart van Baalen
Tijmen Blankevoort
Max Welling
1
+
Neural Network Distiller: A Python Package For DNN Compression Research
2019
Neta Zmora
Guy Jacob
Lev Zlotnik
Bar Elharar
Gal Novik
1
+
PDF
Chat
Neural Network Compression Framework for Fast Model Inference
2021
Alexander Kozlov
Ivan Lazarevich
Vasily Shamporov
Nikolay Lyalyushkin
Yury Gorbachev
1
+
PDF
Chat
UNIQ
2019
Chaim Baskin
Natan Liss
Eli Schwartz
Evgenii Zheltonozhskii
Raja Giryes
Alex Bronstein
Avi Mendelson
1