András Bazsó

Follow

Generating author description...

All published works
Action Title Year Authors
+ On equal values of products and power sums of consecutive elements in an arithmetic progression 2025 András Bazsó
Dijana Kreso
Florian Luca
Ákos Pintér
Csaba Rakaczki
+ Effective results for polynomial values of (alternating) power sums of arithmetic progressions 2024 András Bazsó
+ PDF Chat Singmaster-type results for Stirling numbers and some related diophantine equations 2024 András Bazsó
István Mező
Ákos Pintér
Szabolcs Tengely
+ PDF Chat Effective results for polynomial values of (alternating) power sums of arithmetic progressions 2024 András Bazsó
+ On equal values of products and power sums of consecutive elements in an arithmetic progression 2023 András Bazsó
Dijana Kreso
Florian Luca
Ákos Pintér
Csaba Rakaczki
+ Singmaster-type results for Stirling numbers and some related diophantine equations 2023 András Bazsó
István Mező
Ákos Pintér
Szabolcs Tengely
+ On linear combinations of products of consecutive integers 2020 András Bazsó
+ PDF Chat Diophantine equations connected to the Komornik polynomials 2020 András Bazsó
Attila Bérczes
Ondřej Kolouch
István Pink
Ján Šustek
+ Polynomial values of sums of hyperbolic binomial coefficients 2019 András Bazsó
Lajos Hajdu
+ Some Notes on Alternating Power Sums of Arithmetic Progressions. 2018 András Bazsó
István Mező
+ PDF Chat Polynomial values of sums of products of consecutive integers 2017 András Bazsó
Attila Bérczes
Lajos Hajdu
Florian Luca
+ PDF Chat Polynomial values of (alternating) power sums 2015 András Bazsó
+ On the coefficients of power sums of arithmetic progressions 2015 András Bazsó
István Mező
+ On the coefficients of power sums of arithmetic progressions 2015 András Bazsó
István Mező
+ On the resolution of equations $Ax^n-By^n=C$, II 2015 András Bazsó
Attila Bérczes
Kálmán Győry
Ákos Pintér
+ On the coefficients of power sums of arithmetic progressions 2015 András Bazsó
István Mező
+ PDF Chat Diophantine equations with Appell sequences 2014 András Bazsó
István Pink
+ PDF Chat On alternating power sums of arithmetic progressions 2013 András Bazsó
+ On equal values of power sums of arithmetic progressions 2012 András Bazsó
Dijana Kreso
Florian Luca
Ákos Pintér
+ A refinement of Faulhaber’s theorem concerning sums of powers of natural numbers 2011 András Bazsó
Ákos Pintér
H. M. Srivastava
+ On binomial Thue equations and ternary equations with $S$-unit coefficients 2010 András Bazsó
+ Binomial Thue Equations, Ternary Equations and their Applications 2010 András Bazsó
+ On the resolution of equations Ax^n-By^n=C in integers x,y and n\geq3, II 2010 András Bazsó
Attila Bérczes
Kálmán Győry
Ákos Pintér
+ On binomial Thue equations and ternary equations with S-unit coefficients 2010 András Bazsó
+ On the resolution of equations $Ax^n-By^n=C$ in integers $x,y$ and $n\geq 3$. II. 2010 András Bazsó
Attila Bérczes
Kálmán Győry
Ákos Pintér
+ Further computational experiences on norm form equations with solutions forming arithmetic progressions 2007 András Bazsó
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat None 2002 Yu. Bilu
Β. Brindza
Peter Kirschenhofer
Ákos Pintér
Robert F. Tichy
Andrzej Schinzel
10
+ PDF Chat The Diophantine equation f(x) = g(y) 2000 Yuri Bilu
Robert F. Tichy
9
+ On the Diophantine equation $S_m(x)=g(y)$ 2004 Csaba Rakaczki
7
+ A refinement of Faulhaber’s theorem concerning sums of powers of natural numbers 2011 András Bazsó
Ákos Pintér
H. M. Srivastava
7
+ On equal values of power sums of arithmetic progressions 2012 András Bazsó
Dijana Kreso
Florian Luca
Ákos Pintér
6
+ OnS-integral solutions of the equationy m =f(x) 1984 Β. Brindza
5
+ On the power values of polynomials 1998 A. Bérczes
B. Brindza
L. Hajdu
4
+ On the Euler and Bernoulli polynomials. 1969 John Brillhart
4
+ PDF Chat On the equation $y^m = P(x)$ 1976 Andrzej Schinzel
R. Tijdeman
4
+ PDF Chat Diophantine equations with Bernoulli polynomials 2005 Manisha Kulkarni
B. Sury
3
+ PDF Chat Polynomial values of sums of products of consecutive integers 2017 András Bazsó
Attila Bérczes
Lajos Hajdu
Florian Luca
3
+ A New Formula for the Bernoulli Polynomials 2010 István Mező
3
+ PDF Chat Diophantine equations with Euler polynomials 2013 Dijana Kreso
Csaba Rakaczki
3
+ PDF Chat Polynomial values of (alternating) power sums 2015 András Bazsó
3
+ On the diophantine equation x(x + 1)(x + 2)…(x + (m − 1)) =g(y) 2003 Manisha Kulkarni
B. Sury
3
+ A superelliptic equation involving alternating sums of powers 2011 Michael A. Bennett
3
+ On the equation $1^k+2^k+\cdots+x^k=y^n$ 2003 K. Győry
Ákos Pintér
3
+ PRODUCTS OF CONSECUTIVE INTEGERS 2004 Michael A. Bennett
3
+ PDF Chat A class of Diophantine equations involving Bernoulli polynomials 2005 Manisha Kulkarni
B. Sury
3
+ PDF Chat On the Diophantine Equation <i>n</i>(<i>n</i> + <i>d</i>) · · · (<i>n</i> + (<i>k</i> − 1)<i>d</i>) = <i>by</i><sup><i>l</i></sup> 2004 Kálmán Győry
Lajos Hajdu
N. Saradha
3
+ Sums of Powers of Integers via Generating Functions 1996 F. T. Howard
2
+ PDF Chat Modular Forms, a Computational Approach 2007 William Stein
2
+ Polynomials with Special Regard to Reducibility 2000 Andrzej Schinzel
2
+ Power values of polynomials and binomial Thue--Mahler equations 2004 K. Győry
I. Pink
Ákos Pintér
2
+ The Diophantine equation<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mo stretchy="false">(</mml:mo><mml:mi>a</mml:mi><mml:msup><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>k</mml:mi></mml:mrow></mml:msup><mml:mo>−</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">)</mml:mo><mml:mo stretchy="false">(</mml:mo><mml:mi>b</mml:mi><mml:msup><mml:mrow><mml:mi>y</mml:mi></mml:mrow><mml:mrow><mml:mi>k</mml:mi></mml:mrow></mml:msup><mml:mo… 2013 Zhongfeng Zhang
2
+ Some results on Whitney numbers of Dowling lattices 2013 Mourad Rahmani
2
+ On the maximum of generalized stirling numbers 2011 Roberto B. Corcino
Cristina B. Corcino
2
+ PDF Chat A Multi-Frey Approach to Some Multi-Parameter Families of Diophantine Equations 2008 Yann Bugeaud
Maurice Mignotte
Samir Siksek
2
+ PDF Chat A computational approach for solving $y^2=1^k+2^k+\dotsb+x^k$ 2003 Michael J. Jacobson
Ákos Pintér
Peter Walsh
2
+ On the simple zeros of shifted Euler polynomials 2011 Csaba Rakaczki
2
+ PDF Chat Power values of sums of products of consecutive integers 2016 Lajos Hajdu
Shanta Laishram
Szabolcs Tengely
2
+ PDF Chat Solving Thue equations without the full unit group 1999 Guillaume Hanrot
2
+ The Magma Algebra System I: The User Language 1997 Wieb Bosma
John Cannon
Catherine Playoust
2
+ Equal values of standard counting polynomials 2014 Kálmán Győry
Tündé Kovàcs
Gyöngyvér Péter
Ákos Pintér
2
+ PDF Chat On some generalizations of the diophantine equation s(1<sup>k</sup>+2<sup>k</sup>+⋅⋅⋅+x<sup>k</sup>)+r=dy<sup>n</sup> 2011 Csaba Rakaczki
2
+ Modular Elliptic Curves and Fermat's Last Theorem 1995 Andrew Wiles
2
+ PDF Chat Binomial Thue equations and polynomial powers 2006 Michael A. Bennett
Kálmán Győry
Max Mignotte
Ákos Pintér
2
+ PDF Chat Asymptotic Estimates for Second Kind Generalized Stirling Numbers 2013 Cristina B. Corcino
Roberto B. Corcino
2
+ PDF Chat On the equation 𝑌²=𝑋(𝑋²+𝑝) 1984 Andrew Bremner
J. W. S. Cassels
2
+ PDF Chat On alternating power sums of arithmetic progressions 2013 András Bazsó
2
+ On the power values of power sums 2007 Ákos Pintér
2
+ PDF Chat On the equation $f(1)1^k + f(2)2^k + ... + f(x)x^k + R(x)= by^z$ 1988 Jerzy Urbanowicz
2
+ Irreducibility of polynomials and arithmetic progressions with equal products of terms 1999 Frits Beukers
T. N. Shorey
R. Tijdeman
2
+ INDECOMPOSABILITY OF POLYNOMIALS AND RELATED DIOPHANTINE EQUATIONS 2005 Andrej Dujella
Ivica Gusić
2
+ PDF Chat Binomial Thue equations, ternary equations and power values of polynomials 2012 Kálmán Győry
Ákos Pintér
2
+ Exponential Diophantine Equations 1986 T. N. Shorey
R. Tijdeman
2
+ PDF Chat The product of consecutive integers is never a power 1975 Paul Erdős
J. L. Selfridge
2
+ Some applications of Baker's sharpened bounds to diophantine equations 1975 Robert Tijdeman
2
+ On the resolution of thue inequalities 1987 Attila Pethö
2
+ PDF Chat On the equation $1^k + 2^k + ... + x^k = y^z$ 1980 Kálmán Győry
R. Tijdeman
Marc Voorhoeve
2