+
PDF
Chat
|
Performance Control in Early Exiting to Deploy Large Models at the Same
Cost of Smaller Ones
|
2024
|
Mehrnaz Mofakhami
Reza Bayat
Ioannis Mitliagkas
João M. Monteiro
Valentina Zantedeschi
|
+
PDF
Chat
|
Solving Hidden Monotone Variational Inequalities with Surrogate Losses
|
2024
|
Ryan D'Orazio
Danilo Vucetic
Zichu Liu
Junhyung Lyle Kim
Ioannis Mitliagkas
Gauthier Gidel
|
+
PDF
Chat
|
Understanding Adam Requires Better Rotation Dependent Assumptions
|
2024
|
Lucas Maes
Tianyue H. Zhang
Alexia Jolicoeur‐Martineau
Ioannis Mitliagkas
Damien Scieur
Simon Lacoste-Julien
Charles Guille-Escuret
|
+
PDF
Chat
|
Generating Tabular Data Using Heterogeneous Sequential Feature Forest
Flow Matching
|
2024
|
Ange-Clément Akazan
Alexia Jolicoeur‐Martineau
Ioannis Mitliagkas
|
+
PDF
Chat
|
Compositional Risk Minimization
|
2024
|
Divyat Mahajan
Mohammad Zakaria Pezeshki
Ioannis Mitliagkas
Kartik Ahuja
P. Vincent
|
+
PDF
Chat
|
Are we making progress in unlearning? Findings from the first NeurIPS
unlearning competition
|
2024
|
Eleni Triantafillou
Peter Kairouz
Fabian Pedregosa
Jamie Hayes
Meghdad Kurmanji
Kairan Zhao
Vincent Dumoulin
Julio Jacques Junior
Ioannis Mitliagkas
Jun Wan
|
+
PDF
Chat
|
Gradient descent induces alignment between weights and the empirical NTK
for deep non-linear networks
|
2024
|
Daniel Beaglehole
Ioannis Mitliagkas
Atish Agarwala
|
+
|
Performative Prediction with Neural Networks
|
2023
|
Mehrnaz Mofakhami
Ioannis Mitliagkas
Gauthier Gidel
|
+
|
No Wrong Turns: The Simple Geometry Of Neural Networks Optimization Paths
|
2023
|
Charles Guille-Escuret
Hiroki Naganuma
Kilian Fatras
Ioannis Mitliagkas
|
+
|
Additive Decoders for Latent Variables Identification and Cartesian-Product Extrapolation
|
2023
|
Sébastien Lachapelle
Divyat Mahajan
Ioannis Mitliagkas
Simon Lacoste-Julien
|
+
|
Expecting The Unexpected: Towards Broad Out-Of-Distribution Detection
|
2023
|
Charles Guille-Escuret
Pierre‐André Noël
Ioannis Mitliagkas
David Vázquez
João Monteiro
|
+
|
Gradient Descent Is Optimal Under Lower Restricted Secant Inequality And Upper Error Bound
|
2022
|
Charles Guille-Escuret
Baptiste Goujaud
Adam Ibrahim
Ioannis Mitliagkas
|
+
|
Towards efficient representation identification in supervised learning
|
2022
|
Kartik Ahuja
Divyat Mahajan
Vasilis Syrgkanis
Ioannis Mitliagkas
|
+
|
A Unified Approach to Reinforcement Learning, Quantal Response Equilibria, and Two-Player Zero-Sum Games
|
2022
|
Samuel Sokota
Ryan D'Orazio
J. Zico Kolter
Nicolas Loizou
Marc Lanctot
Ioannis Mitliagkas
Noam Brown
Christian Kroer
|
+
|
Neural Networks Efficiently Learn Low-Dimensional Representations with SGD
|
2022
|
Alireza Mousavi-Hosseini
Sejun Park
Manuela Girotti
Ioannis Mitliagkas
Murat A. Erdogdu
|
+
|
A Reproducible and Realistic Evaluation of Partial Domain Adaptation Methods
|
2022
|
Tiago Salvador
Kilian Fatras
Ioannis Mitliagkas
Adam M. Oberman
|
+
|
CADet: Fully Self-Supervised Out-Of-Distribution Detection With Contrastive Learning
|
2022
|
Charles Guille-Escuret
Pau Rodríguez
David Vázquez
Ioannis Mitliagkas
João Monteiro
|
+
|
Towards Out-of-Distribution Adversarial Robustness
|
2022
|
Adam Ibrahim
Charles Guille-Escuret
Ioannis Mitliagkas
Irina Rish
David Krueger
Pouya Bashivan
|
+
|
Empirical Analysis of Model Selection for Heterogeneous Causal Effect Estimation
|
2022
|
Divyat Mahajan
Ioannis Mitliagkas
Brady Neal
Vasilis Syrgkanis
|
+
|
Empirical Study on Optimizer Selection for Out-of-Distribution Generalization
|
2022
|
Hiroki Naganuma
Kartik Ahuja
Ioannis Mitliagkas
Shiro Takagi
Tetsuya Motokawa
Rio Yokota
Kohta Ishikawa
Ikuro Sato
|
+
|
Synergies between Disentanglement and Sparsity: Generalization and Identifiability in Multi-Task Learning
|
2022
|
Sébastien Lachapelle
Tristan Deleu
Divyat Mahajan
Ioannis Mitliagkas
Yoshua Bengio
Simon Lacoste-Julien
Quentin Bertrand
|
+
|
Optimal transport meets noisy label robust loss and MixUp regularization for domain adaptation
|
2022
|
Kilian Fatras
Hiroki Naganuma
Ioannis Mitliagkas
|
+
|
Stochastic Gradient Descent-Ascent and Consensus Optimization for Smooth Games: Convergence Analysis under Expected Co-coercivity
|
2021
|
Nicolas Loizou
Hugo Berard
Gauthier Gidel
Ioannis Mitliagkas
Simon Lacoste-Julien
|
+
|
Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization
|
2021
|
Kartik Ahuja
Ethan Caballero
Dinghuai Zhang
Jean-Christophe Gagnon-Audet
Yoshua Bengio
Ioannis Mitliagkas
Irina Rish
|
+
|
Stochastic Mirror Descent: Convergence Analysis and Adaptive Variants via the Mirror Stochastic Polyak Stepsize
|
2021
|
Ryan D'Orazio
Nicolas Loizou
Issam Laradji
Ioannis Mitliagkas
|
+
|
Convergence Analysis and Implicit Regularization of Feedback Alignment for Deep Linear Networks.
|
2021
|
Manuela Girotti
Ioannis Mitliagkas
Gauthier Gidel
|
+
|
Stochastic Gradient Descent-Ascent and Consensus Optimization for Smooth Games: Convergence Analysis under Expected Co-coercivity
|
2021
|
Nicolas Loizou
Hugo Berard
Gauthier Gidel
Ioannis Mitliagkas
Simon Lacoste-Julien
|
+
|
Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization
|
2021
|
Kartik Ahuja
Ethan Caballero
Dinghuai Zhang
Yoshua Bengio
Ioannis Mitliagkas
Irina Rish
|
+
|
Gotta Go Fast When Generating Data with Score-Based Models.
|
2021
|
Alexia Jolicoeur‐Martineau
Ke Li
Remi Piché-Taillefer
Tal Kachman
Ioannis Mitliagkas
|
+
|
Stochastic Mirror Descent: Convergence Analysis and Adaptive Variants via the Mirror Stochastic Polyak Stepsize
|
2021
|
Ryan D'Orazio
Nicolas Loizou
Issam Laradji
Ioannis Mitliagkas
|
+
|
Convergence Analysis and Implicit Regularization of Feedback Alignment for Deep Linear Networks
|
2021
|
Manuela Girotti
Ioannis Mitliagkas
Gauthier Gidel
|
+
|
Stochastic Gradient Descent-Ascent and Consensus Optimization for Smooth Games: Convergence Analysis under Expected Co-coercivity
|
2021
|
Nicolas Loizou
Hugo Berard
Gauthier Gidel
Ioannis Mitliagkas
Simon Lacoste-Julien
|
+
|
Gotta Go Fast When Generating Data with Score-Based Models
|
2021
|
Alexia Jolicoeur‐Martineau
Ke Li
Remi Piché-Taillefer
Tal Kachman
Ioannis Mitliagkas
|
+
|
Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization
|
2021
|
Kartik Ahuja
Ethan Caballero
Dinghuai Zhang
Jean-Christophe Gagnon-Audet
Yoshua Bengio
Ioannis Mitliagkas
Irina Rish
|
+
|
A Study of Condition Numbers for First-Order Optimization
|
2020
|
Charles Guille-Escuret
Baptiste Goujaud
Manuela Girotti
Ioannis Mitliagkas
|
+
|
LEAD: Least-Action Dynamics for Min-Max Optimization
|
2020
|
Reyhane Askari Hemmat
Amartya Mitra
Guillaume Lajoie
Ioannis Mitliagkas
|
+
|
In Search of Robust Measures of Generalization.
|
2020
|
Gintare Karolina Dziugaite
Alexandre Drouin
Brady Neal
Nitarshan Rajkumar
Ethan Caballero
Linbo Wang
Ioannis Mitliagkas
Daniel M. Roy
|
+
|
Adversarial score matching and improved sampling for image generation
|
2020
|
Alexia Jolicoeur‐Martineau
Remi Piché-Taillefer
Rémi Tachet des Combes
Ioannis Mitliagkas
|
+
|
Stochastic Hamiltonian Gradient Methods for Smooth Games
|
2020
|
Nicolas Loizou
Hugo Berard
Alexia Jolicoeur‐Martineau
Pascal Vincent
Simon Lacoste-Julien
Ioannis Mitliagkas
|
+
|
Accelerating Smooth Games by Manipulating Spectral Shapes.
|
2020
|
Waïss Azizian
Damien Scieur
Ioannis Mitliagkas
Simon Lacoste-Julien
Gauthier Gidel
|
+
|
A Tight and Unified Analysis of Gradient-Based Methods for a Whole Spectrum of Differentiable Games.
|
2020
|
Waïss Azizian
Ioannis Mitliagkas
Simon Lacoste-Julien
Gauthier Gidel
|
+
|
Accelerating Smooth Games by Manipulating Spectral Shapes
|
2020
|
Waïss Azizian
Damien Scieur
Ioannis Mitliagkas
Simon Lacoste-Julien
Gauthier Gidel
|
+
|
Stochastic Hamiltonian Gradient Methods for Smooth Games
|
2020
|
Nicolas Loizou
Hugo Berard
Alexia Jolicoeur‐Martineau
Pascal Vincent
Simon Lacoste-Julien
Ioannis Mitliagkas
|
+
|
In Search of Robust Measures of Generalization
|
2020
|
Gintare Karolina Dziugaite
Alexandre Drouin
Brady Neal
Nitarshan Rajkumar
Ethan Caballero
Linbo Wang
Ioannis Mitliagkas
Daniel M. Roy
|
+
|
Adversarial score matching and improved sampling for image generation
|
2020
|
Alexia Jolicoeur‐Martineau
Remi Piché-Taillefer
Rémi Tachet des Combes
Ioannis Mitliagkas
|
+
|
LEAD: Min-Max Optimization from a Physical Perspective
|
2020
|
Reyhane Askari Hemmat
Amartya Mitra
Guillaume Lajoie
Ioannis Mitliagkas
|
+
|
A Study of Condition Numbers for First-Order Optimization
|
2020
|
Charles Guille-Escuret
Baptiste Goujaud
Manuela Girotti
Ioannis Mitliagkas
|
+
|
Adversarial target-invariant representation learning for domain generalization
|
2019
|
Isabela Albuquerque
João Monteiro
Mohammad Javad Darvishi Bayazi
Tiago H. Falk
Ioannis Mitliagkas
|
+
|
Connections between Support Vector Machines, Wasserstein distance and gradient-penalty GANs
|
2019
|
Alexia Jolicoeur‐Martineau
Ioannis Mitliagkas
|
+
|
Lower Bounds and Conditioning of Differentiable Games.
|
2019
|
Adam Ibrahim
Waïss Azizian
Gauthier Gidel
Ioannis Mitliagkas
|
+
|
A Tight and Unified Analysis of Extragradient for a Whole Spectrum of Differentiable Games.
|
2019
|
Waïss Azizian
Ioannis Mitliagkas
Simon Lacoste-Julien
Gauthier Gidel
|
+
|
A Unified Analysis of Gradient-Based Methods for a Whole Spectrum of Games
|
2019
|
Waïss Azizian
Ioannis Mitliagkas
Simon Lacoste-Julien
Gauthier Gidel
|
+
|
Multi-objective training of Generative Adversarial Networks with multiple discriminators
|
2019
|
Isabela Albuquerque
João Monteiro
Thang Doan
Breandan Considine
Tiago H. Falk
Ioannis Mitliagkas
|
+
|
MLSys: The New Frontier of Machine Learning Systems
|
2019
|
Alexander Ratner
Dan Alistarh
Gustavo Alonso
David G. Andersen
Peter Bailis
Sarah Bird
Nicholas Carlini
Bryan Catanzaro
Jennifer Chayes
Eric Chung
|
+
|
State-Reification Networks: Improving Generalization by Modeling the Distribution of Hidden Representations
|
2019
|
Alex Lamb
Jonathan Binas
Anirudh Goyal
Sandeep Subramanian
Ioannis Mitliagkas
Denis Kazakov
Yoshua Bengio
Michael C. Mozer
|
+
|
Reducing the variance in online optimization by transporting past gradients
|
2019
|
Sébastien M. R. Arnold
Pierre-Antoine Manzagol
Reza Babanezhad
Ioannis Mitliagkas
Nicolas Le Roux
|
+
|
Linear Lower Bounds and Conditioning of Differentiable Games
|
2019
|
Adam Ibrahim
Waïss Azizian
Gauthier Gidel
Ioannis Mitliagkas
|
+
|
Generalizing to unseen domains via distribution matching
|
2019
|
Isabela Albuquerque
João Monteiro
Mohammad Javad Darvishi Bayazi
Tiago H. Falk
Ioannis Mitliagkas
|
+
|
A Tight and Unified Analysis of Gradient-Based Methods for a Whole Spectrum of Games
|
2019
|
Waïss Azizian
Ioannis Mitliagkas
Simon Lacoste-Julien
Gauthier Gidel
|
+
|
Gradient penalty from a maximum margin perspective
|
2019
|
Alexia Jolicoeur‐Martineau
Ioannis Mitliagkas
|
+
|
Multi-objective training of Generative Adversarial Networks with multiple discriminators
|
2019
|
Isabela Albuquerque
João Monteiro
Thang Doan
Breandan Considine
Tiago H. Falk
Ioannis Mitliagkas
|
+
|
A Modern Take on the Bias-Variance Tradeoff in Neural Networks
|
2018
|
Brady Neal
Sarthak Mittal
Aristide Baratin
Vinayak Tantia
Matthew Scicluna
Simon Lacoste-Julien
Ioannis Mitliagkas
|
+
|
h-detach: Modifying the LSTM Gradient Towards Better Optimization
|
2018
|
Devansh Arpit
Bhargav Kanuparthi
Giancarlo Kerg
Nan Rosemary Ke
Ioannis Mitliagkas
Yoshua Bengio
|
+
|
Negative Momentum for Improved Game Dynamics
|
2018
|
Gauthier Gidel
Reyhane Askari Hemmat
Mohammad Pezeshki
Remi Lepriol
Gabriel Huang
Simon Lacoste-Julien
Ioannis Mitliagkas
|
+
|
Manifold Mixup: Encouraging Meaningful On-Manifold Interpolation as a Regularizer.
|
2018
|
Vikas Verma
Alex Lamb
Christopher Beckham
Aaron Courville
Ioannis Mitliagkas
Yoshua Bengio
|
+
|
Manifold Mixup: Better Representations by Interpolating Hidden States.
|
2018
|
Vikas Verma
Alex Lamb
Christopher Beckham
Amir Najafi
Ioannis Mitliagkas
Aaron Courville
David López-Paz
Yoshua Bengio
|
+
|
Fortified Networks: Improving the Robustness of Deep Networks by Modeling the Manifold of Hidden Representations
|
2018
|
Alex Lamb
Jonathan Binas
Anirudh Goyal
Dmitriy Serdyuk
Sandeep Subramanian
Ioannis Mitliagkas
Yoshua Bengio
|
+
|
h-detach: Modifying the LSTM Gradient Towards Better Optimization
|
2018
|
Devansh Arpit
Bhargav Kanuparthi
Giancarlo Kerg
Nan Rosemary Ke
Ioannis Mitliagkas
Yoshua Bengio
|
+
|
Negative Momentum for Improved Game Dynamics
|
2018
|
Gauthier Gidel
Reyhane Askari Hemmat
Mohammad Zakaria Pezeshki
Remi Lepriol
Gabriel Huang
Simon Lacoste-Julien
Ioannis Mitliagkas
|
+
|
Manifold Mixup: Better Representations by Interpolating Hidden States
|
2018
|
Vikas Verma
Alex Lamb
Christopher Beckham
Amir Najafi
Ioannis Mitliagkas
Aaron Courville
David López-Paz
Yoshua Bengio
|
+
|
A Modern Take on the Bias-Variance Tradeoff in Neural Networks
|
2018
|
Brady Neal
Sarthak Mittal
Aristide Baratin
Vinayak Tantia
Matthew Scicluna
Simon Lacoste-Julien
Ioannis Mitliagkas
|
+
|
Deep Learning at 15PF: Supervised and Semi-Supervised Classification for Scientific Data
|
2017
|
Thorsten Kurth
Jian Zhang
Satish Nadathur
Ioannis Mitliagkas
Evan Racah
Mostofa Patwary
Tareq B. Malas
Narayanan Sundaram
W. Bhimji
Mikhail E. Smorkalov
|
+
|
Improving Gibbs Sampler Scan Quality with DoGS
|
2017
|
Ioannis Mitliagkas
Lester Mackey
|
+
|
Accelerated Stochastic Power Iteration
|
2017
|
Christopher De
Bryan He
Ioannis Mitliagkas
Christopher Ré
Peng Xu
|
+
|
Representation Learning and Adversarial Generation of 3D Point Clouds
|
2017
|
Panos Achlioptas
Olga Diamanti
Ioannis Mitliagkas
Leonidas Guibas
|
+
|
YellowFin and the Art of Momentum Tuning
|
2017
|
Jian Zhang
Ioannis Mitliagkas
|
+
|
Improving Gibbs Sampler Scan Quality with DoGS
|
2017
|
Ioannis Mitliagkas
Lester Mackey
|
+
|
Learning Representations and Generative Models for 3D Point Clouds
|
2017
|
Panos Achlioptas
Olga Diamanti
Ioannis Mitliagkas
Leonidas Guibas
|
+
|
Accelerated Stochastic Power Iteration
|
2017
|
Christopher De
Bryan He
Ioannis Mitliagkas
Christopher Ré
Peng Xu
|
+
|
Deep Learning at 15PF: Supervised and Semi-Supervised Classification for Scientific Data
|
2017
|
Thorsten Kurth
Jian Zhang
Nadathur Satish
Ioannis Mitliagkas
Evan Racah
Mostofa Patwary
Tareq B. Malas
Narayanan Sundaram
W. Bhimji
Mikhail E. Smorkalov
|
+
PDF
Chat
|
Asynchrony begets momentum, with an application to deep learning
|
2016
|
Ioannis Mitliagkas
Ce Zhang
Stefan Hadjis
Christopher Ré
|
+
|
Scan Order in Gibbs Sampling: Models in Which it Matters and Bounds on How Much
|
2016
|
Bryan He
Christopher De
Ioannis Mitliagkas
Christopher Ré
|
+
|
Asynchrony begets Momentum, with an Application to Deep Learning
|
2016
|
Ioannis Mitliagkas
Ce Zhang
Stefan Hadjis
Christopher Ré
|
+
|
Omnivore: An Optimizer for Multi-device Deep Learning on CPUs and GPUs
|
2016
|
Stefan Hadjis
Ce Zhang
Ioannis Mitliagkas
Christopher Ré
|
+
|
Parallel SGD: When does averaging help?
|
2016
|
Jian Zhang
Christopher De
Ioannis Mitliagkas
Christopher Ré
|
+
|
Scan Order in Gibbs Sampling: Models in Which it Matters and Bounds on How Much
|
2016
|
Bryan He
Christopher De
Ioannis Mitliagkas
Christopher Ré
|
+
|
Asynchrony begets Momentum, with an Application to Deep Learning
|
2016
|
Ioannis Mitliagkas
Ce Zhang
Stefan Hadjis
Christopher Ré
|
+
|
FrogWild! -- Fast PageRank Approximations on Graph Engines
|
2015
|
Ioannis Mitliagkas
Michael Borokhovich
Alexandros G. Dimakis
Constantine Caramanis
|
+
|
Memory Limited, Streaming PCA
|
2013
|
Ioannis Mitliagkas
Constantine Caramanis
Prateek Jain
|
+
|
Memory Limited, Streaming PCA
|
2013
|
Ioannis Mitliagkas
Constantine Caramanis
Prateek Jain
|
+
|
Streaming, Memory-limited PCA
|
2013
|
Ioannis Mitliagkas
Constantine Caramanis
Prateek Jain
|
+
|
Memory Limited, Streaming PCA
|
2013
|
Ioannis Mitliagkas
Constantine Caramanis
Prateek Jain
|
+
|
Sum Capacity of Gaussian Interfering Multiple Access Channels in the Low Interference Regime
|
2011
|
Jubin Jose
Ioannis Mitliagkas
Sriram Vishwanath
|
+
|
Sum Capacity of Gaussian Interfering Multiple Access Channels in the Low Interference Regime
|
2011
|
Jubin Jose
Ioannis Mitliagkas
Sriram Vishwanath
|