Ioannis Mitliagkas

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Performance Control in Early Exiting to Deploy Large Models at the Same Cost of Smaller Ones 2024 Mehrnaz Mofakhami
Reza Bayat
Ioannis Mitliagkas
João M. Monteiro
Valentina Zantedeschi
+ PDF Chat Solving Hidden Monotone Variational Inequalities with Surrogate Losses 2024 Ryan D'Orazio
Danilo Vucetic
Zichu Liu
Junhyung Lyle Kim
Ioannis Mitliagkas
Gauthier Gidel
+ PDF Chat Understanding Adam Requires Better Rotation Dependent Assumptions 2024 Lucas Maes
Tianyue H. Zhang
Alexia Jolicoeur‐Martineau
Ioannis Mitliagkas
Damien Scieur
Simon Lacoste-Julien
Charles Guille-Escuret
+ PDF Chat Generating Tabular Data Using Heterogeneous Sequential Feature Forest Flow Matching 2024 Ange-Clément Akazan
Alexia Jolicoeur‐Martineau
Ioannis Mitliagkas
+ PDF Chat Compositional Risk Minimization 2024 Divyat Mahajan
Mohammad Zakaria Pezeshki
Ioannis Mitliagkas
Kartik Ahuja
P. Vincent
+ PDF Chat Are we making progress in unlearning? Findings from the first NeurIPS unlearning competition 2024 Eleni Triantafillou
Peter Kairouz
Fabian Pedregosa
Jamie Hayes
Meghdad Kurmanji
Kairan Zhao
Vincent Dumoulin
Julio Jacques Junior
Ioannis Mitliagkas
Jun Wan
+ PDF Chat Gradient descent induces alignment between weights and the empirical NTK for deep non-linear networks 2024 Daniel Beaglehole
Ioannis Mitliagkas
Atish Agarwala
+ Performative Prediction with Neural Networks 2023 Mehrnaz Mofakhami
Ioannis Mitliagkas
Gauthier Gidel
+ No Wrong Turns: The Simple Geometry Of Neural Networks Optimization Paths 2023 Charles Guille-Escuret
Hiroki Naganuma
Kilian Fatras
Ioannis Mitliagkas
+ Additive Decoders for Latent Variables Identification and Cartesian-Product Extrapolation 2023 Sébastien Lachapelle
Divyat Mahajan
Ioannis Mitliagkas
Simon Lacoste-Julien
+ Expecting The Unexpected: Towards Broad Out-Of-Distribution Detection 2023 Charles Guille-Escuret
Pierre‐André Noël
Ioannis Mitliagkas
David Vázquez
João Monteiro
+ Gradient Descent Is Optimal Under Lower Restricted Secant Inequality And Upper Error Bound 2022 Charles Guille-Escuret
Baptiste Goujaud
Adam Ibrahim
Ioannis Mitliagkas
+ Towards efficient representation identification in supervised learning 2022 Kartik Ahuja
Divyat Mahajan
Vasilis Syrgkanis
Ioannis Mitliagkas
+ A Unified Approach to Reinforcement Learning, Quantal Response Equilibria, and Two-Player Zero-Sum Games 2022 Samuel Sokota
Ryan D'Orazio
J. Zico Kolter
Nicolas Loizou
Marc Lanctot
Ioannis Mitliagkas
Noam Brown
Christian Kroer
+ Neural Networks Efficiently Learn Low-Dimensional Representations with SGD 2022 Alireza Mousavi-Hosseini
Sejun Park
Manuela Girotti
Ioannis Mitliagkas
Murat A. Erdogdu
+ A Reproducible and Realistic Evaluation of Partial Domain Adaptation Methods 2022 Tiago Salvador
Kilian Fatras
Ioannis Mitliagkas
Adam M. Oberman
+ CADet: Fully Self-Supervised Out-Of-Distribution Detection With Contrastive Learning 2022 Charles Guille-Escuret
Pau Rodríguez
David Vázquez
Ioannis Mitliagkas
João Monteiro
+ Towards Out-of-Distribution Adversarial Robustness 2022 Adam Ibrahim
Charles Guille-Escuret
Ioannis Mitliagkas
Irina Rish
David Krueger
Pouya Bashivan
+ Empirical Analysis of Model Selection for Heterogeneous Causal Effect Estimation 2022 Divyat Mahajan
Ioannis Mitliagkas
Brady Neal
Vasilis Syrgkanis
+ Empirical Study on Optimizer Selection for Out-of-Distribution Generalization 2022 Hiroki Naganuma
Kartik Ahuja
Ioannis Mitliagkas
Shiro Takagi
Tetsuya Motokawa
Rio Yokota
Kohta Ishikawa
Ikuro Sato
+ Synergies between Disentanglement and Sparsity: Generalization and Identifiability in Multi-Task Learning 2022 Sébastien Lachapelle
Tristan Deleu
Divyat Mahajan
Ioannis Mitliagkas
Yoshua Bengio
Simon Lacoste-Julien
Quentin Bertrand
+ Optimal transport meets noisy label robust loss and MixUp regularization for domain adaptation 2022 Kilian Fatras
Hiroki Naganuma
Ioannis Mitliagkas
+ Stochastic Gradient Descent-Ascent and Consensus Optimization for Smooth Games: Convergence Analysis under Expected Co-coercivity 2021 Nicolas Loizou
Hugo Berard
Gauthier Gidel
Ioannis Mitliagkas
Simon Lacoste-Julien
+ Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization 2021 Kartik Ahuja
Ethan Caballero
Dinghuai Zhang
Jean-Christophe Gagnon-Audet
Yoshua Bengio
Ioannis Mitliagkas
Irina Rish
+ Stochastic Mirror Descent: Convergence Analysis and Adaptive Variants via the Mirror Stochastic Polyak Stepsize 2021 Ryan D'Orazio
Nicolas Loizou
Issam Laradji
Ioannis Mitliagkas
+ Convergence Analysis and Implicit Regularization of Feedback Alignment for Deep Linear Networks. 2021 Manuela Girotti
Ioannis Mitliagkas
Gauthier Gidel
+ Stochastic Gradient Descent-Ascent and Consensus Optimization for Smooth Games: Convergence Analysis under Expected Co-coercivity 2021 Nicolas Loizou
Hugo Berard
Gauthier Gidel
Ioannis Mitliagkas
Simon Lacoste-Julien
+ Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization 2021 Kartik Ahuja
Ethan Caballero
Dinghuai Zhang
Yoshua Bengio
Ioannis Mitliagkas
Irina Rish
+ Gotta Go Fast When Generating Data with Score-Based Models. 2021 Alexia Jolicoeur‐Martineau
Ke Li
Remi Piché-Taillefer
Tal Kachman
Ioannis Mitliagkas
+ Stochastic Mirror Descent: Convergence Analysis and Adaptive Variants via the Mirror Stochastic Polyak Stepsize 2021 Ryan D'Orazio
Nicolas Loizou
Issam Laradji
Ioannis Mitliagkas
+ Convergence Analysis and Implicit Regularization of Feedback Alignment for Deep Linear Networks 2021 Manuela Girotti
Ioannis Mitliagkas
Gauthier Gidel
+ Stochastic Gradient Descent-Ascent and Consensus Optimization for Smooth Games: Convergence Analysis under Expected Co-coercivity 2021 Nicolas Loizou
Hugo Berard
Gauthier Gidel
Ioannis Mitliagkas
Simon Lacoste-Julien
+ Gotta Go Fast When Generating Data with Score-Based Models 2021 Alexia Jolicoeur‐Martineau
Ke Li
Remi Piché-Taillefer
Tal Kachman
Ioannis Mitliagkas
+ Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization 2021 Kartik Ahuja
Ethan Caballero
Dinghuai Zhang
Jean-Christophe Gagnon-Audet
Yoshua Bengio
Ioannis Mitliagkas
Irina Rish
+ A Study of Condition Numbers for First-Order Optimization 2020 Charles Guille-Escuret
Baptiste Goujaud
Manuela Girotti
Ioannis Mitliagkas
+ LEAD: Least-Action Dynamics for Min-Max Optimization 2020 Reyhane Askari Hemmat
Amartya Mitra
Guillaume Lajoie
Ioannis Mitliagkas
+ In Search of Robust Measures of Generalization. 2020 Gintare Karolina Dziugaite
Alexandre Drouin
Brady Neal
Nitarshan Rajkumar
Ethan Caballero
Linbo Wang
Ioannis Mitliagkas
Daniel M. Roy
+ Adversarial score matching and improved sampling for image generation 2020 Alexia Jolicoeur‐Martineau
Remi Piché-Taillefer
Rémi Tachet des Combes
Ioannis Mitliagkas
+ Stochastic Hamiltonian Gradient Methods for Smooth Games 2020 Nicolas Loizou
Hugo Berard
Alexia Jolicoeur‐Martineau
Pascal Vincent
Simon Lacoste-Julien
Ioannis Mitliagkas
+ Accelerating Smooth Games by Manipulating Spectral Shapes. 2020 Waïss Azizian
Damien Scieur
Ioannis Mitliagkas
Simon Lacoste-Julien
Gauthier Gidel
+ A Tight and Unified Analysis of Gradient-Based Methods for a Whole Spectrum of Differentiable Games. 2020 Waïss Azizian
Ioannis Mitliagkas
Simon Lacoste-Julien
Gauthier Gidel
+ Accelerating Smooth Games by Manipulating Spectral Shapes 2020 Waïss Azizian
Damien Scieur
Ioannis Mitliagkas
Simon Lacoste-Julien
Gauthier Gidel
+ Stochastic Hamiltonian Gradient Methods for Smooth Games 2020 Nicolas Loizou
Hugo Berard
Alexia Jolicoeur‐Martineau
Pascal Vincent
Simon Lacoste-Julien
Ioannis Mitliagkas
+ In Search of Robust Measures of Generalization 2020 Gintare Karolina Dziugaite
Alexandre Drouin
Brady Neal
Nitarshan Rajkumar
Ethan Caballero
Linbo Wang
Ioannis Mitliagkas
Daniel M. Roy
+ Adversarial score matching and improved sampling for image generation 2020 Alexia Jolicoeur‐Martineau
Remi Piché-Taillefer
Rémi Tachet des Combes
Ioannis Mitliagkas
+ LEAD: Min-Max Optimization from a Physical Perspective 2020 Reyhane Askari Hemmat
Amartya Mitra
Guillaume Lajoie
Ioannis Mitliagkas
+ A Study of Condition Numbers for First-Order Optimization 2020 Charles Guille-Escuret
Baptiste Goujaud
Manuela Girotti
Ioannis Mitliagkas
+ Adversarial target-invariant representation learning for domain generalization 2019 Isabela Albuquerque
João Monteiro
Mohammad Javad Darvishi Bayazi
Tiago H. Falk
Ioannis Mitliagkas
+ Connections between Support Vector Machines, Wasserstein distance and gradient-penalty GANs 2019 Alexia Jolicoeur‐Martineau
Ioannis Mitliagkas
+ Lower Bounds and Conditioning of Differentiable Games. 2019 Adam Ibrahim
Waïss Azizian
Gauthier Gidel
Ioannis Mitliagkas
+ A Tight and Unified Analysis of Extragradient for a Whole Spectrum of Differentiable Games. 2019 Waïss Azizian
Ioannis Mitliagkas
Simon Lacoste-Julien
Gauthier Gidel
+ A Unified Analysis of Gradient-Based Methods for a Whole Spectrum of Games 2019 Waïss Azizian
Ioannis Mitliagkas
Simon Lacoste-Julien
Gauthier Gidel
+ Multi-objective training of Generative Adversarial Networks with multiple discriminators 2019 Isabela Albuquerque
João Monteiro
Thang Doan
Breandan Considine
Tiago H. Falk
Ioannis Mitliagkas
+ MLSys: The New Frontier of Machine Learning Systems 2019 Alexander Ratner
Dan Alistarh
Gustavo Alonso
David G. Andersen
Peter Bailis
Sarah Bird
Nicholas Carlini
Bryan Catanzaro
Jennifer Chayes
Eric Chung
+ State-Reification Networks: Improving Generalization by Modeling the Distribution of Hidden Representations 2019 Alex Lamb
Jonathan Binas
Anirudh Goyal
Sandeep Subramanian
Ioannis Mitliagkas
Denis Kazakov
Yoshua Bengio
Michael C. Mozer
+ Reducing the variance in online optimization by transporting past gradients 2019 Sébastien M. R. Arnold
Pierre-Antoine Manzagol
Reza Babanezhad
Ioannis Mitliagkas
Nicolas Le Roux
+ Linear Lower Bounds and Conditioning of Differentiable Games 2019 Adam Ibrahim
Waïss Azizian
Gauthier Gidel
Ioannis Mitliagkas
+ Generalizing to unseen domains via distribution matching 2019 Isabela Albuquerque
João Monteiro
Mohammad Javad Darvishi Bayazi
Tiago H. Falk
Ioannis Mitliagkas
+ A Tight and Unified Analysis of Gradient-Based Methods for a Whole Spectrum of Games 2019 Waïss Azizian
Ioannis Mitliagkas
Simon Lacoste-Julien
Gauthier Gidel
+ Gradient penalty from a maximum margin perspective 2019 Alexia Jolicoeur‐Martineau
Ioannis Mitliagkas
+ Multi-objective training of Generative Adversarial Networks with multiple discriminators 2019 Isabela Albuquerque
João Monteiro
Thang Doan
Breandan Considine
Tiago H. Falk
Ioannis Mitliagkas
+ A Modern Take on the Bias-Variance Tradeoff in Neural Networks 2018 Brady Neal
Sarthak Mittal
Aristide Baratin
Vinayak Tantia
Matthew Scicluna
Simon Lacoste-Julien
Ioannis Mitliagkas
+ h-detach: Modifying the LSTM Gradient Towards Better Optimization 2018 Devansh Arpit
Bhargav Kanuparthi
Giancarlo Kerg
Nan Rosemary Ke
Ioannis Mitliagkas
Yoshua Bengio
+ Negative Momentum for Improved Game Dynamics 2018 Gauthier Gidel
Reyhane Askari Hemmat
Mohammad Pezeshki
Remi Lepriol
Gabriel Huang
Simon Lacoste-Julien
Ioannis Mitliagkas
+ Manifold Mixup: Encouraging Meaningful On-Manifold Interpolation as a Regularizer. 2018 Vikas Verma
Alex Lamb
Christopher Beckham
Aaron Courville
Ioannis Mitliagkas
Yoshua Bengio
+ Manifold Mixup: Better Representations by Interpolating Hidden States. 2018 Vikas Verma
Alex Lamb
Christopher Beckham
Amir Najafi
Ioannis Mitliagkas
Aaron Courville
David López-Paz
Yoshua Bengio
+ Fortified Networks: Improving the Robustness of Deep Networks by Modeling the Manifold of Hidden Representations 2018 Alex Lamb
Jonathan Binas
Anirudh Goyal
Dmitriy Serdyuk
Sandeep Subramanian
Ioannis Mitliagkas
Yoshua Bengio
+ h-detach: Modifying the LSTM Gradient Towards Better Optimization 2018 Devansh Arpit
Bhargav Kanuparthi
Giancarlo Kerg
Nan Rosemary Ke
Ioannis Mitliagkas
Yoshua Bengio
+ Negative Momentum for Improved Game Dynamics 2018 Gauthier Gidel
Reyhane Askari Hemmat
Mohammad Zakaria Pezeshki
Remi Lepriol
Gabriel Huang
Simon Lacoste-Julien
Ioannis Mitliagkas
+ Manifold Mixup: Better Representations by Interpolating Hidden States 2018 Vikas Verma
Alex Lamb
Christopher Beckham
Amir Najafi
Ioannis Mitliagkas
Aaron Courville
David López-Paz
Yoshua Bengio
+ A Modern Take on the Bias-Variance Tradeoff in Neural Networks 2018 Brady Neal
Sarthak Mittal
Aristide Baratin
Vinayak Tantia
Matthew Scicluna
Simon Lacoste-Julien
Ioannis Mitliagkas
+ Deep Learning at 15PF: Supervised and Semi-Supervised Classification for Scientific Data 2017 Thorsten Kurth
Jian Zhang
Satish Nadathur
Ioannis Mitliagkas
Evan Racah
Mostofa Patwary
Tareq B. Malas
Narayanan Sundaram
W. Bhimji
Mikhail E. Smorkalov
+ Improving Gibbs Sampler Scan Quality with DoGS 2017 Ioannis Mitliagkas
Lester Mackey
+ Accelerated Stochastic Power Iteration 2017 Christopher De
Bryan He
Ioannis Mitliagkas
Christopher Ré
Peng Xu
+ Representation Learning and Adversarial Generation of 3D Point Clouds 2017 Panos Achlioptas
Olga Diamanti
Ioannis Mitliagkas
Leonidas Guibas
+ YellowFin and the Art of Momentum Tuning 2017 Jian Zhang
Ioannis Mitliagkas
+ Improving Gibbs Sampler Scan Quality with DoGS 2017 Ioannis Mitliagkas
Lester Mackey
+ Learning Representations and Generative Models for 3D Point Clouds 2017 Panos Achlioptas
Olga Diamanti
Ioannis Mitliagkas
Leonidas Guibas
+ Accelerated Stochastic Power Iteration 2017 Christopher De
Bryan He
Ioannis Mitliagkas
Christopher Ré
Peng Xu
+ Deep Learning at 15PF: Supervised and Semi-Supervised Classification for Scientific Data 2017 Thorsten Kurth
Jian Zhang
Nadathur Satish
Ioannis Mitliagkas
Evan Racah
Mostofa Patwary
Tareq B. Malas
Narayanan Sundaram
W. Bhimji
Mikhail E. Smorkalov
+ PDF Chat Asynchrony begets momentum, with an application to deep learning 2016 Ioannis Mitliagkas
Ce Zhang
Stefan Hadjis
Christopher Ré
+ Scan Order in Gibbs Sampling: Models in Which it Matters and Bounds on How Much 2016 Bryan He
Christopher De
Ioannis Mitliagkas
Christopher Ré
+ Asynchrony begets Momentum, with an Application to Deep Learning 2016 Ioannis Mitliagkas
Ce Zhang
Stefan Hadjis
Christopher Ré
+ Omnivore: An Optimizer for Multi-device Deep Learning on CPUs and GPUs 2016 Stefan Hadjis
Ce Zhang
Ioannis Mitliagkas
Christopher Ré
+ Parallel SGD: When does averaging help? 2016 Jian Zhang
Christopher De
Ioannis Mitliagkas
Christopher Ré
+ Scan Order in Gibbs Sampling: Models in Which it Matters and Bounds on How Much 2016 Bryan He
Christopher De
Ioannis Mitliagkas
Christopher Ré
+ Asynchrony begets Momentum, with an Application to Deep Learning 2016 Ioannis Mitliagkas
Ce Zhang
Stefan Hadjis
Christopher Ré
+ FrogWild! -- Fast PageRank Approximations on Graph Engines 2015 Ioannis Mitliagkas
Michael Borokhovich
Alexandros G. Dimakis
Constantine Caramanis
+ Memory Limited, Streaming PCA 2013 Ioannis Mitliagkas
Constantine Caramanis
Prateek Jain
+ Memory Limited, Streaming PCA 2013 Ioannis Mitliagkas
Constantine Caramanis
Prateek Jain
+ Streaming, Memory-limited PCA 2013 Ioannis Mitliagkas
Constantine Caramanis
Prateek Jain
+ Memory Limited, Streaming PCA 2013 Ioannis Mitliagkas
Constantine Caramanis
Prateek Jain
+ Sum Capacity of Gaussian Interfering Multiple Access Channels in the Low Interference Regime 2011 Jubin Jose
Ioannis Mitliagkas
Sriram Vishwanath
+ Sum Capacity of Gaussian Interfering Multiple Access Channels in the Low Interference Regime 2011 Jubin Jose
Ioannis Mitliagkas
Sriram Vishwanath
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Some methods of speeding up the convergence of iteration methods 1964 B. T. Polyak
10
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
9
+ Improved Techniques for Training GANs 2016 Tim Salimans
Ian Goodfellow
Wojciech Zaremba
Vicki Cheung
Alec Radford
Xi Chen
7
+ Introductory Lectures on Convex Optimization: A Basic Course 2014 Ю Е Нестеров
7
+ GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium 2017 Martin Heusel
Hubert Ramsauer
Thomas Unterthiner
Bernhard Nessler
Sepp Hochreiter
6
+ A Variational Inequality Perspective on Generative Adversarial Networks 2018 Gauthier Gidel
Hugo Berard
Gaëtan Vignoud
Pascal Vincent
Simon Lacoste-Julien
6
+ Spectral Normalization for Generative Adversarial Networks 2018 Takeru Miyato
Toshiki Kataoka
Masanori Koyama
Yuichi Yoshida
5
+ Interaction Matters: A Note on Non-asymptotic Local Convergence of Generative Adversarial Networks 2018 Tengyuan Liang
James Stokes
4
+ Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks 2015 Alec Radford
Luke Metz
Soumith Chintala
4
+ Adam: A Method for Stochastic Optimization 2014 Diederik P. Kingma
Jimmy Ba
4
+ PDF Chat Identity Mappings in Deep Residual Networks 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
4
+ Connecting Generative Adversarial Networks and Actor-Critic Methods 2016 David Pfau
Oriol Vinyals
4
+ HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent 2011 Feng Niu
Benjamin Recht
Christopher Ré
Stephen J. Wright
4
+ The Mechanics of n-Player Differentiable Games 2018 David Balduzzi
Sébastien Racanière
James Martens
Jakob Foerster
Karl Tuyls
Thore Graepel
4
+ Towards Deep Learning Models Resistant to Adversarial Attacks. 2018 Aleksander Mądry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
4
+ On Finding Local Nash Equilibria (and Only Local Nash Equilibria) in Zero-Sum Games 2019 Eric Mazumdar
Michael I. Jordan
S. Shankar Sastry
4
+ Omnivore: An Optimizer for Multi-device Deep Learning on CPUs and GPUs 2016 Stefan Hadjis
Ce Zhang
Ioannis Mitliagkas
Christopher Ré
4
+ The extragradient method for finding saddle points and other problems 1976 G. M. Korpelevich
4
+ Asynchrony begets Momentum, with an Application to Deep Learning 2016 Ioannis Mitliagkas
Ce Zhang
Stefan Hadjis
Christopher Ré
3
+ A Tight and Unified Analysis of Gradient-Based Methods for a Whole Spectrum of Differentiable Games. 2020 Waïss Azizian
Ioannis Mitliagkas
Simon Lacoste-Julien
Gauthier Gidel
3
+ Revisiting Distributed Synchronous SGD 2017 Jianmin Chen
Rajat Monga
Samy Bengio
Rafał Józefowicz
3
+ On lower and upper bounds in smooth and strongly convex optimization 2016 Yossi Arjevani
Shai Shalev‐Shwartz
Ohad Shamir
3
+ Adversarial target-invariant representation learning for domain generalization 2019 Isabela Albuquerque
João Monteiro
Mohammad Javad Darvishi Bayazi
Tiago H. Falk
Ioannis Mitliagkas
3
+ PDF Chat Least Squares Generative Adversarial Networks 2017 Xudong Mao
Qing Li
Haoran Xie
Raymond Y.K. Lau
Zhen Wang
Stephen Paul Smolley
3
+ A Unified Analysis of Extra-gradient and Optimistic Gradient Methods for Saddle Point Problems: Proximal Point Approach. 2020 Aryan Mokhtari
Asuman Ozdaglar
Sarath Pattathil
3
+ PDF Chat Linear convergence of first order methods for non-strongly convex optimization 2018 Ion Necoara
Yu. Nesterov
François Glineur
3
+ PDF Chat Rethinking the Inception Architecture for Computer Vision 2016 Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jon Shlens
Zbigniew Wojna
3
+ Stochastic Variance Reduction Methods for Saddle-Point Problems 2016 Palaniappan Balamurugan
Francis Bach
3
+ Invariant Risk Minimization 2019 Martín Arjovsky
Léon Bottou
Ishaan Gulrajani
David López-Paz
3
+ PDF Chat Prox-Method with Rate of Convergence <i>O</i>(1/<i>t</i>) for Variational Inequalities with Lipschitz Continuous Monotone Operators and Smooth Convex-Concave Saddle Point Problems 2004 Arkadi Nemirovski
3
+ PDF Chat A Style-Based Generator Architecture for Generative Adversarial Networks 2019 Tero Karras
Samuli Laine
Timo Aila
3
+ Last-iterate convergence rates for min-max optimization 2019 Jacob Abernethy
Kevin A. Lai
Andre Wibisono
3
+ On linear convergence of iterative methods for the variational inequality problem 1995 Paul Tseng
3
+ Large Scale GAN Training for High Fidelity Natural Image Synthesis 2018 Andrew Brock
Jeff Donahue
Karen Simonyan
3
+ Momentum and Stochastic Momentum for Stochastic Gradient, Newton, Proximal Point and Subspace Descent Methods 2017 Nicolas Loizou
Peter Richtárik
3
+ Nonlinear Programming 1995 Dimitri P. Bertsekas
3
+ Robust Stochastic Approximation Approach to Stochastic Programming 2009 Arkadi Nemirovski
Anatoli Juditsky
Guanghui Lan
Alexander Shapiro
3
+ PDF Chat SGD: General Analysis and Improved Rates 2019 Robert M. Gower
Nicolas Loizou
Xun Qian
Alibek Sailanbayev
Egor Shulgin
Peter Richtárik
3
+ The relativistic discriminator: a key element missing from standard GAN 2018 Alexia Jolicoeur‐Martineau
3
+ TensorFlow: A system for large-scale machine learning 2016 Martı́n Abadi
Paul Barham
Jianmin Chen
Zhifeng Chen
Andy Davis
Jay B. Dean
Matthieu Devin
Sanjay Ghemawat
Geoffrey Irving
Michael Isard
3
+ PDF Chat Minimizing finite sums with the stochastic average gradient 2016 Mark Schmidt
Nicolas Le Roux
Francis Bach
3
+ PDF Chat Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition 2016 Hamed Karimi
Julie Nutini
Mark Schmidt
3
+ Unrolled Generative Adversarial Networks 2016 Luke Metz
Ben Poole
David Pfau
Jascha Sohl‐Dickstein
2
+ PDF Chat Relatively Smooth Convex Optimization by First-Order Methods, and Applications 2018 Haihao Lu
Robert M. Freund
Yurii Nesterov
2
+ PDF Chat Stochastic optimization for PCA and PLS 2012 Raman Arora
Andrew Cotter
Karen Livescu
Nathan Srebro
2
+ PDF Chat Equilibrium Propagation: Bridging the Gap between Energy-Based Models and Backpropagation 2017 Benjamin Scellier
Yoshua Bengio
2
+ Train faster, generalize better: Stability of stochastic gradient descent 2015 Moritz Hardt
Benjamin Recht
Yoram Singer
2
+ NIPS 2016 Tutorial: Generative Adversarial Networks 2017 Ian Goodfellow
2
+ Regularized Nonlinear Acceleration 2016 Damien Scieur
Alexandre d’Aspremont
Francis Bach
2
+ Dobrushin Conditions and Systematic Scan 2008 Martin Dyer
Leslie Ann Goldberg
Mark Jerrum
2