Sambuddha Ghosal

Follow

Generating author description...

All published works
Action Title Year Authors
+ A deep-learning toolkit for visualization and interpretation of segmented medical images 2021 Sambuddha Ghosal
Pratik Shah
+ Uncertainty Quantified Deep Learning for Predicting Dice Coefficient of Digital Histopathology Image Segmentation 2021 Sambuddha Ghosal
Audrey Xie
Pratik Shah
+ Deep Multi-view Image Fusion for Soybean Yield Estimation in Breeding Applications Deep Multi-view Image Fusion for Soybean Yield Estimation in Breeding Applications. 2020 Luis G. Riera
Matthew E. Carroll
Zhisheng Zhang
Johnathon M. Shook
Sambuddha Ghosal
Tianshuang Gao
Arti Singh
Sourabh Bhattacharya
Baskar Ganapathysubramanian
Asheesh K. Singh
+ Interpretable and synergistic deep learning for visual explanation and statistical estimations of segmentation of disease features from medical images. 2020 Sambuddha Ghosal
Pratik Shah
+ Deep Multi-view Image Fusion for Soybean Yield Estimation in Breeding Applications Deep Multi-view Image Fusion for Soybean Yield Estimation in Breeding Applications 2020 Luis G Riera
Matthew E. Carroll
Zhisheng Zhang
Johnathon M. Shook
Sambuddha Ghosal
Tianshuang Gao
Arti Singh
Sourabh Bhattacharya
Baskar Ganapathysubramanian
Asheesh K. Singh
+ PDF Chat Interpretable deep learning for guided microstructure-property explorations in photovoltaics 2019 Balaji Sesha Sarath Pokuri
Sambuddha Ghosal
Apurva Kokate
Soumik Sarkar
Baskar Ganapathysubramanian
+ Encoding Invariances in Deep Generative Models 2019 Viraj Shah
Ameya Joshi
Sambuddha Ghosal
Balaji Sesha Sarath Pokuri
Soumik Sarkar
Baskar Ganapathysubramanian
Chinmay Hegde
+ Deep Generative Models Strike Back! Improving Understanding and Evaluation in Light of Unmet Expectations for OoD Data 2019 John J. Just
Sambuddha Ghosal
+ Interpretable deep learning for guided structure-property explorations in photovoltaics 2018 Balaji Sesha Sarath Pokuri
Sambuddha Ghosal
Apurva Kokate
Baskar Ganapathysubramanian
Soumik Sarkar
+ Interpretable Deep Learning applied to Plant Stress Phenotyping 2017 Sambuddha Ghosal
David Blystone
Asheesh K. Singh
Baskar Ganapathysubramanian
Arti Singh
Soumik Sarkar
+ Interpretable Deep Learning applied to Plant Stress Phenotyping 2017 Sambuddha Ghosal
David Blystone
Asheesh K. Singh
Baskar Ganapathysubramanian
Arti Singh
Soumik Sarkar
+ An unsupervised spatiotemporal graphical modeling approach to anomaly detection in distributed CPS 2016 Chao Liu
Sambuddha Ghosal
Zhanhong Jiang
Soumik Sarkar
+ PDF Chat An Unsupervised Spatiotemporal Graphical Modeling Approach to Anomaly Detection in Distributed CPS 2016 Chao Liu
Sambuddha Ghosal
Zhanhong Jiang
Soumik Sarkar
+ An unsupervised spatiotemporal graphical modeling approach to anomaly detection in distributed CPS 2015 Chao Liu
Sambuddha Ghosal
Zhanhong Jiang
Soumik Sarkar
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Very Deep Convolutional Networks for Large-Scale Image Recognition 2014 Karen Simonyan
Andrew Zisserman
5
+ Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps 2013 Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
3
+ PDF Chat Interpretable deep learning for guided microstructure-property explorations in photovoltaics 2019 Balaji Sesha Sarath Pokuri
Sambuddha Ghosal
Apurva Kokate
Soumik Sarkar
Baskar Ganapathysubramanian
3
+ Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift 2015 Sergey Ioffe
Christian Szegedy
3
+ PDF Chat Modeling morphology evolution during solvent-based fabrication of organic solar cells 2012 Olga Wodo
Baskar Ganapathysubramanian
2
+ PDF Chat Use of Deep Learning to Develop and Analyze Computational Hematoxylin and Eosin Staining of Prostate Core Biopsy Images for Tumor Diagnosis 2020 Aman Rana
Alarice Lowe
Marie Lithgow
Katharine Horback
Tyler Janovitz
Annacarolina da Silva
Harrison Tsai
Vignesh Shanmugam
Akram Bayat
Pratik Shah
2
+ PDF Chat Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study 2018 John R. Zech
Marcus A. Badgeley
Manway Liu
Anthony Costa
J. Titano
Eric K. Oermann
2
+ TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image Segmentation 2018 Vladimir I. Iglovikov
Alexey A. Shvets
2
+ Methods for interpreting and understanding deep neural networks 2017 Grégoire Montavon
Wojciech Samek
Klaus‐Robert MĂŒller
2
+ PDF Chat Learning Deep Features for Discriminative Localization 2016 Bolei Zhou
Aditya Khosla
Àgata Lapedriza
Aude Oliva
Antonio Torralba
2
+ On causality and mutual information 2008 Victor Solo
2
+ PDF Chat Machine Learning Algorithms for Classification of Microcirculation Images from Septic and Non-septic Patients 2018 Perikumar Javia
Aman Rana
Nathan I. Shapiro
Pratik Shah
2
+ Unsupervised Cross-Modality Domain Adaptation of ConvNets for Biomedical Image Segmentations with Adversarial Loss 2018 Qi Dou
Cheng Ouyang
Cheng Chen
Hao Chen
Pheng‐Ann Heng
2
+ PDF Chat Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization 2017 Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
2
+ PDF Chat ImageNet Large Scale Visual Recognition Challenge 2015 Olga Russakovsky
Jia Deng
Hao Su
Jonathan Krause
Sanjeev Satheesh
Sean Ma
Zhiheng Huang
Andrej Karpathy
Aditya Khosla
Michael S. Bernstein
2
+ ADADELTA: An Adaptive Learning Rate Method 2012 Matthew D. Zeiler
2
+ Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks 2015 Alec Radford
Luke Metz
Soumith Chintala
2
+ Network In Network 2013 Min Lin
Qiang Chen
Shuicheng Yan
2
+ PDF Chat An Introduction to the Theory of Statistics 1911 2
+ What do we need to build explainable AI systems for the medical domain? 2017 Andreas Holzinger
Chris Biemann
Constantinos S. Pattichis
Douglas B. Kell
1
+ PDF Chat Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantification 2018 Yinhao Zhu
Nicholas Zabaras
1
+ On the Limitations of First-Order Approximation in GAN Dynamics 2017 Jerry Li
Aleksander Mądry
John Peebles
Ludwig Schmidt
1
+ UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction 2018 Leland McInnes
John J. Healy
1
+ Which Training Methods for GANs do actually Converge? 2018 Lars Mescheder
Andreas Geiger
Sebastian Nowozin
1
+ PDF Chat Enforcing constraints for interpolation and extrapolation in Generative Adversarial Networks 2019 Panos Stinis
Tobias Hagge
Alexandre M. Tartakovsky
Enoch Yeung
1
+ Unsupervised Cross-Modality Domain Adaptation of ConvNets for Biomedical Image Segmentations with Adversarial Loss 2018 Qi Dou
Cheng Ouyang
Cheng Chen
Hao Chen
Pheng‐Ann Heng
1
+ PDF Chat Do Better ImageNet Models Transfer Better? 2019 Simon Kornblith
Jonathon Shlens
Quoc V. Le
1
+ Glow: Generative Flow with Invertible 1x1 Convolutions 2018 Diederik P. Kingma
Prafulla Dhariwal
1
+ PARyOpt: A software for Parallel Asynchronous Remote Bayesian Optimization 2018 Balaji Sesha Sarath Pokuri
Alec Lofquist
Chad Risko
Baskar Ganapathysubramanian
1
+ PDF Chat NTIRE 2020 Challenge on Spectral Reconstruction from an RGB Image 2020 Boaz Arad
Radu Timofte
Ohad Ben‐Shahar
Yi‐Tun Lin
Graham D. Finlayson
Shai Givati
Jiaojiao Li
Chaoxiong Wu
Rui Song
Yunsong Li
1
+ Large Scale GAN Training for High Fidelity Natural Image Synthesis 2018 Andrew Brock
Jeff Donahue
Karen Simonyan
1
+ Do GAN Loss Functions Really Matter 2018 Yipeng Qin
Niloy J. Mitra
Peter Wonka
1
+ Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data 2019 Yinhao Zhu
Nicholas Zabaras
Phaedon‐Stelios Koutsourelakis
Paris Perdikaris
1
+ WAIC, but Why? Generative Ensembles for Robust Anomaly Detection 2018 Hyunsun Choi
Eric Jang
Alexander A. Alemi
1
+ How does Lipschitz Regularization Influence GAN Training? 2018 Yipeng Qin
Niloy J. Mitra
Peter Wonka
1
+ The KiTS19 Challenge Data: 300 Kidney Tumor Cases with Clinical Context, CT Semantic Segmentations, and Surgical Outcomes 2019 Nicholas Heller
Niranjan Sathianathen
Arveen Kalapara
Edward Walczak
Keenan Moore
Heather Kaluzniak
Joel Rosenberg
Paul Blake
Zachary Rengel
Makinna Oestreich
1
+ Spatially Constrained Generative Adversarial Networks for Conditional Image Generation 2019 Songyao Jiang
Hongfu Liu
Yue Wu
Yun Fu
1
+ Transfusion: Understanding Transfer Learning for Medical Imaging 2019 Maithra Raghu
Chiyuan Zhang
Jon Kleinberg
Samy Bengio
1
+ Encoding Invariances in Deep Generative Models 2019 Viraj Shah
Ameya Joshi
Sambuddha Ghosal
Balaji Sesha Sarath Pokuri
Soumik Sarkar
Baskar Ganapathysubramanian
Chinmay Hegde
1
+ Deep Anomaly Detection with Outlier Exposure 2018 Dan Hendrycks
Mantas Mazeika
Thomas G. Dietterich
1
+ MADE: Masked Autoencoder for Distribution Estimation 2015 Mathieu Germain
Karol Gregor
Iain Murray
Hugo Larochelle
1
+ PDF Chat Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks 2017 Jun-Yan Zhu
Taesung Park
Phillip Isola
Alexei A. Efros
1
+ PDF Chat Constrained Image Generation Using Binarized Neural Networks with Decision Procedures 2018 Svyatoslav Korneev
Nina Narodytska
Luca Pulina
Armando Tacchella
Nikolaj BjĂžrner
Mooly Sagiv
1
+ PDF Chat Image-to-Image Translation with Conditional Adversarial Networks 2017 Phillip Isola
Jun-Yan Zhu
Tinghui Zhou
Alexei A. Efros
1
+ InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets 2016 Xi Chen
Yan Duan
Rein Houthooft
John Schulman
Ilya Sutskever
Pieter Abbeel
1
+ PDF Chat Focal Loss for Dense Object Detection 2017 Tsung-Yi Lin
Priya Goyal
Ross Girshick
Kaiming He
Piotr DollĂĄr
1
+ Bias and Generalization in Deep Generative Models: An Empirical Study 2018 Shengjia Zhao
Hongyu Ren
Arianna Yuan
Jiaming Song
Noah D. Goodman
Stefano Ermon
1
+ Interaction Matters: A Note on Non-asymptotic Local Convergence of Generative Adversarial Networks 2018 Tengyuan Liang
James Stokes
1
+ The Unusual Effectiveness of Averaging in GAN Training 2018 Yasin Yazıcı
Chuan-Sheng Foo
Stefan Winkler
Kim–Hui Yap
Georgios Piliouras
Vijay Chandrasekhar
1
+ PDF Chat Entropy-Isomap: Manifold Learning for High-dimensional Dynamic Processes 2018 Frank Schoeneman
Varun Chandola
Nils Napp
Olga Wodo
JarosƂaw Ć»ola
1