Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Robert Wood
Follow
Share
Generating author description...
All published works
Action
Title
Year
Authors
+
An Always Convergent Method for Approximating the Spectral Radius of a Non-Negative Matrix, With Particular Reference to a Leontief Input-Output System
2009
Robert Wood
+
PDF
Chat
Finding the spectral radius of a large sparse non-negative matrix
2007
Robert Wood
M. J. O'Neill
+
PDF
Chat
A faster algorithm for identification of an M-Matrix
2005
Robert Wood
M. J. O'Neill
+
Using The Spectral Radius to Determine whether a Leontief System Has a Unique Positive Solution
2002
Robert Wood
Michael O’Neill
+
An Alternative Proof of the Hawkins-Simon Condition
1999
M. O'Neill
Robert Wood
+
A forbidden-suborder characterization of binarily-composable diagrams in double categories.
1995
Robert J. MacG. Dawson
Robert Wood
Common Coauthors
Coauthor
Papers Together
M. J. O'Neill
2
M. O'Neill
1
Michael O’Neill
1
Robert J. MacG. Dawson
1
Commonly Cited References
Action
Title
Year
Authors
# of times referenced
+
PDF
Chat
Bounds for the Greatest Latent Root of a Positive Matrix
1952
Alexander Ostrowski
2
+
Using The Spectral Radius to Determine whether a Leontief System Has a Unique Positive Solution
2002
Robert Wood
Michael O’Neill
2
+
Simultaneous iteration for computing invariant subspaces of non-Hermitian matrices
1976
G. W. Stewart
2
+
A First Course in Numerical Analysis
1966
Herbert Maisel
Anthony Ralston
1
+
Bounds for the Greatest Latent Roots of a Positive Matrix
1950
Walter Ledermann
1
+
An Arnoldi-type algorithm for computing page rank
2006
Gene H. Golub
Chen Greif
1
+
A new upper bound for the spectral radius of graphs with girth at least 5
2005
Mei Lu
Huiqing Liu
Feng Tian
1
+
PDF
Chat
A faster algorithm for identification of an M-Matrix
2005
Robert Wood
M. J. O'Neill
1
+
PDF
Chat
The principle of minimized iterations in the solution of the matrix eigenvalue problem
1951
Walter E. Arnoldi
1
+
PDF
Chat
The maximal spectral radius of a digraph with (m+1)^2-s edges
2003
Jan Snellman
1
+
<i>Analysis of Numerical Methods</i>
1967
Eugene Isaacson
Herbert B. Keller
George H. Weiss
1
+
The maximal spectral radius of a digraph with (m+1)^2 - s edges
2002
Jan Snellman
1