Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Xing Fu
Follow
Share
Generating author description...
All published works
Action
Title
Year
Authors
+
PDF
Chat
Self-supervision meets kernel graph neural models: From architecture to augmentations
2023
Jiawang Dan
Ruofan Wu
Yunpeng Liu
Baokun Wang
Changhua Meng
Tengfei Liu
Tianyi Zhang
Ningtao Wang
Xing Fu
Qi Li
+
Self-supervision meets kernel graph neural models: From architecture to augmentations
2023
Jiawang Dan
Ruofan Wu
Yunpeng Liu
Baokun Wang
Changhua Meng
Tengfei Liu
Tianyi Zhang
Ningtao Wang
Xing Fu
Qi Li
Common Coauthors
Coauthor
Papers Together
Ruofan Wu
2
Tengfei Liu
2
Ningtao Wang
2
Changhua Meng
2
Yunpeng Liu
2
Baokun Wang
2
Jiawang Dan
2
Tianyi Zhang
2
Weiqiang Wang
1
Qi Li
1
Qi Li
1
Weiqiang Wang
1
Commonly Cited References
Action
Title
Year
Authors
# of times referenced
+
PDF
Chat
A Survey of Statistical Network Models
2009
Anna Goldenberg
1
+
PDF
Chat
Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs
2017
Martin Simonovsky
Nikos Komodakis
1
+
Relational inductive biases, deep learning, and graph networks
2018
Peter Battaglia
Jessica B. Hamrick
Victor Bapst
Álvaro Sánchez‐González
Vinícius Zambaldi
Mateusz Malinowski
Andrea Tacchetti
David Raposo
Adam Santoro
Ryan Faulkner
1
+
Proceedings of the 25th international conference on Machine learning
2008
William W. Cohen
Andrew McCallum
Sam T. Roweis
1
+
Hierarchical Graph Representation Learning with Differentiable Pooling
2018
Rex Ying
Jiaxuan You
Christopher Morris
Xiang Ren
William L. Hamilton
Jure Leskovec
1
+
How Powerful are Graph Neural Networks?
2018
Keyulu Xu
Weihua Hu
Jure Leskovec
Stefanie Jegelka
1
+
Semi-Supervised Classification with Graph Convolutional Networks
2016
Thomas Kipf
Max Welling
1
+
Graph Contrastive Learning with Augmentations
2020
Yuning You
Tianlong Chen
Yongduo Sui
Ting Chen
Zhangyang Wang
Yang Shen
1
+
PDF
Chat
GCC
2020
Jiezhong Qiu
Qibin Chen
Yuxiao Dong
Jing Zhang
Hongxia Yang
Ming Ding
Kuansan Wang
Jie Tang
1
+
Adversarial Graph Augmentation to Improve Graph Contrastive Learning
2021
Susheel Suresh
Li Pan
Cong Hao
Jennifer Neville
1
+
PDF
Chat
Exploring Simple Siamese Representation Learning
2021
Xinlei Chen
Kaiming He
1
+
PDF
Chat
Self-Supervised Learning on Graphs: Contrastive, Generative, or Predictive
2021
Lirong Wu
Haitao Lin
Cheng Tan
Zhangyang Gao
Stan Z. Li
1
+
PDF
Chat
KerGNNs: Interpretable Graph Neural Networks with Graph Kernels
2022
Aosong Feng
Chenyu You
Shiqiang Wang
Leandros Tassiulas
1
+
Weisfeiler and Leman go Machine Learning: The Story so far
2021
Christopher G. Morris
Yaron Lipman
Haggai Maron
Bastian Rieck
Nils M. Kriege
Martin Grohe
Matthias Fey
Karsten Borgwardt
1
+
A Fair Comparison of Graph Neural Networks for Graph Classification
2019
Federico Errica
Marco Podda
Davide Bacciu
Alessio Micheli
1
+
Diffusion Improves Graph Learning
2019
Johannes Gasteiger
Stefan Weißenberger
Stephan Günnemann
1
+
InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization
2019
Fan-Yun Sun
Jordan Hoffmann
Vikas Verma
Jian Tang
1
+
GraphMAE: Self-Supervised Masked Graph Autoencoders
2022
Zhenyu Hou
Xiao Liu
Yukuo Cen
Yuxiao Dong
Hongxia Yang
Chunjie Wang
Jie Tang
1
+
Inductive Representation Learning on Large Graphs
2017
William L. Hamilton
Rex Ying
Jure Leskovec
1
+
PyTorch: An Imperative Style, High-Performance Deep Learning Library
2019
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James T. Bradbury
Gregory Chanan
Trevor Killeen
Zeming Lin
Natalia Gimelshein
Luca Antiga
1
+
Representation Learning with Contrastive Predictive Coding
2018
Aäron van den Oord
Yazhe Li
Oriol Vinyals
1
+
Spectral Augmentation for Self-Supervised Learning on Graphs
2022
Lu Lin
Jinghui Chen
Hongning Wang
1
+
Variational Graph Auto-Encoders
2016
Thomas Kipf
Max Welling
1