Xing Fu

Follow

Generating author description...

Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat A Survey of Statistical Network Models 2009 Anna Goldenberg
1
+ PDF Chat Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs 2017 Martin Simonovsky
Nikos Komodakis
1
+ Relational inductive biases, deep learning, and graph networks 2018 Peter Battaglia
Jessica B. Hamrick
Victor Bapst
Álvaro Sánchez‐González
Vinícius Zambaldi
Mateusz Malinowski
Andrea Tacchetti
David Raposo
Adam Santoro
Ryan Faulkner
1
+ Proceedings of the 25th international conference on Machine learning 2008 William W. Cohen
Andrew McCallum
Sam T. Roweis
1
+ Hierarchical Graph Representation Learning with Differentiable Pooling 2018 Rex Ying
Jiaxuan You
Christopher Morris
Xiang Ren
William L. Hamilton
Jure Leskovec
1
+ How Powerful are Graph Neural Networks? 2018 Keyulu Xu
Weihua Hu
Jure Leskovec
Stefanie Jegelka
1
+ Semi-Supervised Classification with Graph Convolutional Networks 2016 Thomas Kipf
Max Welling
1
+ Graph Contrastive Learning with Augmentations 2020 Yuning You
Tianlong Chen
Yongduo Sui
Ting Chen
Zhangyang Wang
Yang Shen
1
+ PDF Chat GCC 2020 Jiezhong Qiu
Qibin Chen
Yuxiao Dong
Jing Zhang
Hongxia Yang
Ming Ding
Kuansan Wang
Jie Tang
1
+ Adversarial Graph Augmentation to Improve Graph Contrastive Learning 2021 Susheel Suresh
Li Pan
Cong Hao
Jennifer Neville
1
+ PDF Chat Exploring Simple Siamese Representation Learning 2021 Xinlei Chen
Kaiming He
1
+ PDF Chat Self-Supervised Learning on Graphs: Contrastive, Generative, or Predictive 2021 Lirong Wu
Haitao Lin
Cheng Tan
Zhangyang Gao
Stan Z. Li
1
+ PDF Chat KerGNNs: Interpretable Graph Neural Networks with Graph Kernels 2022 Aosong Feng
Chenyu You
Shiqiang Wang
Leandros Tassiulas
1
+ Weisfeiler and Leman go Machine Learning: The Story so far 2021 Christopher G. Morris
Yaron Lipman
Haggai Maron
Bastian Rieck
Nils M. Kriege
Martin Grohe
Matthias Fey
Karsten Borgwardt
1
+ A Fair Comparison of Graph Neural Networks for Graph Classification 2019 Federico Errica
Marco Podda
Davide Bacciu
Alessio Micheli
1
+ Diffusion Improves Graph Learning 2019 Johannes Gasteiger
Stefan Weißenberger
Stephan Günnemann
1
+ InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization 2019 Fan-Yun Sun
Jordan Hoffmann
Vikas Verma
Jian Tang
1
+ GraphMAE: Self-Supervised Masked Graph Autoencoders 2022 Zhenyu Hou
Xiao Liu
Yukuo Cen
Yuxiao Dong
Hongxia Yang
Chunjie Wang
Jie Tang
1
+ Inductive Representation Learning on Large Graphs 2017 William L. Hamilton
Rex Ying
Jure Leskovec
1
+ PyTorch: An Imperative Style, High-Performance Deep Learning Library 2019 Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James T. Bradbury
Gregory Chanan
Trevor Killeen
Zeming Lin
Natalia Gimelshein
Luca Antiga
1
+ Representation Learning with Contrastive Predictive Coding 2018 Aäron van den Oord
Yazhe Li
Oriol Vinyals
1
+ Spectral Augmentation for Self-Supervised Learning on Graphs 2022 Lu Lin
Jinghui Chen
Hongning Wang
1
+ Variational Graph Auto-Encoders 2016 Thomas Kipf
Max Welling
1