Truong Nguyen-Ba

Follow

Generating author description...

All published works
Action Title Year Authors
+ ON RUNGE–KUTTA–NYSTROM FORMULAE WITH CONTRACTIVITY PRESERVING PROPERTIES FOR SECOND ORDER ODES 2018 NULL AUTHOR_ID
Thierry Giordano
NULL AUTHOR_ID
+ A new class of efficient one-step contractivity preserving high-order time discretization methods of order 5 to 14 2017 Abdulrahman Karouma
Truong Nguyen-Ba
Thierry Giordano
RĂ©mi Vaillancourt
+ On contractivity preserving 4- to 7-step predictor-corrector HBO series for ODEs 2017 Truong Nguyen-Ba
Thierry Giordano
Huong Nguyen-Thu
RĂ©mi Vaillancourt
+ On second derivative 3-stage Hermite--Birkhoff--Obrechkoff methods for stiff ODEs: A-stable up to order 10 with variable stepsize 2017 Truong Nguyen-Ba
Thierry Giordano
RĂ©mi Vaillancourt
+ PDF Chat On contractivity-preserving 2- and 3-step predictor-corrector series for ODEs 2017 Truong Nguyen-Ba
Abdulrahman Alzahrani
Thierry Giordano
RĂ©mi Vaillancourt
+ PDF Chat On variable step highly stable 4-stage Hermite-Birkhoff solvers for stiff ODEs 2016 Truong Nguyen-Ba
Thierry Giordano
+ Contractivity-preserving explicit multistep Hermite–Obrechkoff series differential equation solvers 2015 Truong Nguyen-Ba
Thierry Giordano
RĂ©mi Vaillancourt
+ On variable step Hermite–Birkhoff solvers combining multistep and 4-stage DIRK methods for stiff ODEs 2015 Truong Nguyen-Ba
+ Three-stage Hermite–Birkhoff solver of order 8 and 9 with variable step size for stiff ODEs 2014 Truong Nguyen-Ba
Thierry Giordano
RĂ©mi Vaillancourt
+ Strong-stability-preserving, Hermite–Birkhoff time-discretization based on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si64.gif" display="inline" overflow="scroll"><mml:mi>k</mml:mi></mml:math> step methods and 8-stage explicit Runge–Kutta methods of order 5 and 4 2013 Huong Nguyen-Thu
Truong Nguyen-Ba
RĂ©mi Vaillancourt
+ Contractivity-preserving explicit Hermite–Obrechkoff ODE solver of order 13 2013 Truong Nguyen-Ba
Steven J. Desjardins
P. W. Sharp
RĂ©mi Vaillancourt
+ Strong-stability-preserving, One-step, 9-stage, Hermite–Birkhoff–Taylor, Time-discretization Methods Combining Taylor and RK4 Methods 2012 Truong Nguyen-Ba
Abdulrahman Karouma
Thierry Giordano
RĂ©mi Vaillancourt
+ Strong-stability-preserving Hermite–Birkhoff Timediscretization Methods Combining k-step Methods and Explicit s-stage RK4 Methods 2012 Truong Nguyen-Ba
Huong Nguyen-Thu
Thierry Giordano
RĂ©mi Vaillancourt
+ Variable-step variable-order 3-stage Hermite–Birkhoff–Obrechkoff DDE solver of order 4 to 14 2011 Hemza Yagoub
Truong Nguyen-Ba
RĂ©mi Vaillancourt
+ Pryce pre-analysis adapted to some DAE solvers 2011 Truong Nguyen-Ba
Hemza Yagoub
Hong Hao
RĂ©mi Vaillancourt
+ Strong-Stability-Preserving 7-Stage Hermite–Birkhoff Time-Discretization Methods 2011 Truong Nguyen-Ba
Huong Nguyen-Thu
Thierry Giordano
RĂ©mi Vaillancourt
+ PDF Chat Strong-Stability-Preserving, K-Step, 5- to 10-Stage, Hermite-Birkhoff Time-Discretizations of Order 12 2011 Truong Nguyen-Ba
Huong Nguyen-Thu
Re ́mi Vaillancourt
+ Pryce Structural Analysis Adapted to Hermite—Birkhoff—Taylor DAE Solvers 2011 Truong Nguyen-Ba
Hemza Yagoub
RĂ©mi Vaillancourt
Ilias Kotsireas
Roderick Melnik
Brian West
+ Strong-Stability-Preserving Hermite—Birkhoff Time-Discretizations of Order 4 to 12 2011 Truong Nguyen-Ba
Huong Nguyen-Thu
RĂ©mi Vaillancourt
Ilias Kotsireas
Roderick Melnik
Brian West
+ Strong-stability-preserving 3-stage Hermite–Birkhoff time-discretization methods 2010 Truong Nguyen-Ba
Huong Nguyen-Thu
Thierry Giordano
RĂ©mi Vaillancourt
+ A three-stage, VSVO, Hermite–Birkhoff–Taylor, ODE solver 2010 Vladan Bozic
Truong Nguyen-Ba
RĂ©mi Vaillancourt
+ Solution of Electric Circuits by a 9-stage Hermite-Birkhoff-Taylor DAE Solver of Order 11 2010 Truong Nguyen-Ba
Hemza Yagoub
Hao Han
RĂ©mi Vaillancourt
+ One-step strong-stability-preserving Hermite-Birkhoff-Taylor methods 2010 Truong Nguyen-Ba
Huong Nguyen-Thu
Thierry Giordano
RĂ©mi Vaillancourt
+ A one-step 7-stage Hermite–Birkhoff–Taylor ODE solver of order 11 2009 Truong Nguyen-Ba
Vladan Bozic
Emmanuel Kengne
RĂ©mi Vaillancourt
+ One-step 9-stage Hermite–Birkhoff–Taylor DAE solver of order 10 2009 Truong Nguyen-Ba
Hao Han
Hemza Yagoub
RĂ©mi Vaillancourt
+ One-step 5-stage Hermite–Birkhoff–Taylor ODE solver of order 12 2009 Truong Nguyen-Ba
Hao Han
Hemza Yagoub
RĂ©mi Vaillancourt
+ PDF Chat Nine-stage multi-derivative Runge-Kutta method of order 12 2009 Truong Nguyen-Ba
Vladan Bozic
Emmanuel Kengne
RĂ©mi Vaillancourt
+ One-step 9-stage Hermite–Birkhoff–Taylor ODE solver of order 10 2008 Truong Nguyen-Ba
Vladan Bozic
Emmanuel Kengne
RĂ©mi Vaillancourt
+ Hermite–Birkhoff–Obrechkoff four-stage four-step ODE solver of order 14 with quantized step size 2008 Truong Nguyen-Ba
P. W. Sharp
RĂ©mi Vaillancourt
+ One-step 9-stage hermite-birtchoff-taylor ode solver of order 11 2008 Vladan Bozic
A. PrzybyƂo
Truong Nguyen-Ba
RĂ©mi Vaillancourt
+ Hermite-Birkhoff-Obrechkoff 3-stage 4-step ODE solver of order14 with quantized stepsize 2007 Truong Nguyen-Ba
P. W. Sharp
Hemza Yagoub
RĂ©mi Vaillancourt
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Comparing Numerical Methods for Ordinary Differential Equations 1972 T. E. Hull
W. H. Enright
B. M. Fellen
A. E. Sedgwick
14
+ PDF Chat Numerical comparisons of some explicit Runge-Kutta pairs of orders 4 through 8 1991 P. W. Sharp
13
+ VSVO formulation of the taylor method for the numerical solution of ODEs 2005 Roberto Barrio
Fernando Blesa
Martı́n Lara
12
+ High order embedded Runge-Kutta formulae 1981 P.J. Prince
John R. Dormand
12
+ PDF Chat Solving Ordinary Differential Equations Using Taylor Series 1982 George F. Corliss
Yao‐Feng Chang
10
+ A one-step 7-stage Hermite–Birkhoff–Taylor ODE solver of order 11 2009 Truong Nguyen-Ba
Vladan Bozic
Emmanuel Kengne
RĂ©mi Vaillancourt
10
+ Strong stability preserving hybrid methods 2008 Chengming Huang
9
+ Automatic programming of recurrent power series 1999 Martı́n Lara
A. Elipe
M. Palacios
9
+ Sensitivity Analysis of ODES/DAES Using the Taylor Series Method 2006 Roberto Barrio
9
+ Validated solutions of initial value problems for ordinary differential equations 1999 Nedialko S. Nedialkov
Kenneth R. Jackson
George F. Corliss
8
+ PDF Chat Solving ordinary differential equations I. nonstiff problems 1987 Ernst Hairer
Syvert P. NĂžrsett
Gerhard Wanner
8
+ None 2003 Jens Hoefkens
Martin Berz
Kyoko Makino
8
+ High Order Strong Stability Preserving Time Discretizations 2008 Sigal Gottlieb
David I. Ketcheson
Chi‐Wang Shu
8
+ Strong Stability-Preserving High-Order Time Discretization Methods 2001 Sigal Gottlieb
Chi‐Wang Shu
Eitan Tadmor
7
+ PDF Chat Efficient implementation of essentially non-oscillatory shock-capturing schemes 1988 Chi‐Wang Shu
Stanley Osher
6
+ Performance of the Taylor series method for ODEs/DAEs 2004 Roberto Barrio
6
+ Efficient implementation of essentially non-oscillatory shock-capturing schemes, II 1989 Chi‐Wang Shu
Stanley Osher
6
+ Numerical Methods for Ordinary Differential Systems: The Initial Value Problem 1991 J. D. Lambert
5
+ Non-linear evolution using optimal fourth-order strong-stability-preserving Runge–Kutta methods 2003 Raymond J. Spiteri
Steven J. Ruuth
5
+ Global optimization of explicit strong-stability-preserving Runge-Kutta methods 2005 Steven J. Ruuth
5
+ PDF Chat TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework 1989 Bernardo Cockburn
Chi‐Wang Shu
5
+ High Resolution Schemes and the Entropy Condition 1997 Stanley Osher
Sukumar Chakravarthy
5
+ High-Order Strong-Stability-Preserving Runge--Kutta Methods with Downwind-Biased Spatial Discretizations 2004 Steven J. Ruuth
Raymond J. Spiteri
5
+ None 2002 Steven J. Ruuth
Raymond J. Spiteri
5
+ PDF Chat Two FORTRAN packages for assessing initial value methods 1987 W. H. Enright
John D. Pryce
5
+ Three-stage Hermite-Birkhoff-Taylor ODE solver with a C++ program 2008 Vladan Bozic
5
+ High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws 1984 P. K. Sweby
5
+ A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods 2002 Raymond J. Spiteri
Steven J. Ruuth
5
+ PDF Chat On High Order Strong Stability Preserving Runge–Kutta and Multi Step Time Discretizations 2005 Sigal Gottlieb
4
+ PDF Chat Highly Efficient Strong Stability-Preserving Runge–Kutta Methods with Low-Storage Implementations 2008 David I. Ketcheson
4
+ Solving Ordinary Differential Equations II: Stiff and Differential - Algebraic Problems 1991 Ernst Hairer
Gerhard Wanner
4
+ Contractivity of Runge-Kutta methods 1991 J. F. B. M. Kraaijevanger
4
+ High-order linear multistep methods with general monotonicity and boundedness properties 2005 Steven J. Ruuth
Willem Hundsdorfer
4
+ The Numerical Analysis of Ordinary Differential Equations; Runge-Kutta and General Linear Methods. 1988 Kenneth R. Jackson
J. C. Butcher
4
+ PDF Chat A Software Package for the Numerical Integration of ODEs by Means of High-Order Taylor Methods 2005 Àngel Jorba
Maorong Zou
4
+ Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems 1993 Ernst Hairer
Syvert P. NĂžrsett
Gerhard Wanner
4
+ Quadpack: A Subroutine Package for Automatic Integration 2011 Robert Piessens
Elise de Doncker-Kapenga
Christoph Überhuber
David K. Kahaner
4
+ One-step 5-stage Hermite–Birkhoff–Taylor ODE solver of order 12 2009 Truong Nguyen-Ba
Hao Han
Hemza Yagoub
RĂ©mi Vaillancourt
4
+ Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations 2011 Sigal Gottlieb
David I. Ketcheson
Chi‐Wang Shu
4
+ PDF Chat High Resolution Schemes and the Entropy Condition 1984 Stanley Osher
Sukumar Chakravarthy
4
+ PDF Chat On Runge-Kutta processes of high order 1964 J. C. Butcher
3
+ Computational Methods in Ordinary Differential Equations 1973 J. D. Lambert
3
+ ATOMFT: solving ODEs and DAEs using Taylor series 1994 Yao‐Feng Chang
George F. Corliss
3
+ Optimal explicit strong-stability-preserving general linear methods : complete results. 2009 Emil M. Constantinescu
Adrian Sandu
3
+ Total-Variation-Diminishing Time Discretizations 1988 Chi‐Wang Shu
3
+ PDF Chat Low-storage, explicit Runge–Kutta schemes for the compressible Navier–Stokes equations 2000 Christopher Kennedy
Mark H. Carpenter
Robert Michael Lewis
3
+ PDF Chat Coefficients for the study of Runge-Kutta integration processes 1963 J. C. Butcher
3
+ PDF Chat Computation of optimal monotonicity preserving general linear methods 2009 David I. Ketcheson
3
+ Solving Ordinary Differential Equations II 1996 Ernst Hairer
Gerhard Wanner
3
+ PDF Chat Monotonicity-Preserving Linear Multistep Methods 2003 Willem Hundsdorfer
Steven J. Ruuth
Raymond J. Spiteri
3