Author Description

Login to generate an author description

Ask a Question About This Mathematician

The recovery of sparse data is at the core of many applications in machine learning and signal processing. While such problems can be tackled using $\ell_1$-regularization as in the LASSO … The recovery of sparse data is at the core of many applications in machine learning and signal processing. While such problems can be tackled using $\ell_1$-regularization as in the LASSO estimator and in the Basis Pursuit approach, specialized algorithms are typically required to solve the corresponding high-dimensional non-smooth optimization for large instances. Iteratively Reweighted Least Squares (IRLS) is a widely used algorithm for this purpose due its excellent numerical performance. However, while existing theory is able to guarantee convergence of this algorithm to the minimizer, it does not provide a global convergence rate. In this paper, we prove that a variant of IRLS converges with a global linear rate to a sparse solution, i.e., with a linear error decrease occurring immediately from any initialization, if the measurements fulfill the usual null space property assumption. We support our theory by numerical experiments showing that our linear rate captures the correct dimension dependence. We anticipate that our theoretical findings will lead to new insights for many other use cases of the IRLS algorithm, such as in low-rank matrix recovery.
We propose an iterative algorithm for low-rank matrix completion that can be interpreted as both an iteratively reweighted least squares (IRLS) algorithm and a saddle-escaping smoothing Newton method applied to … We propose an iterative algorithm for low-rank matrix completion that can be interpreted as both an iteratively reweighted least squares (IRLS) algorithm and a saddle-escaping smoothing Newton method applied to a non-convex rank surrogate objective. It combines the favorable data efficiency of previous IRLS approaches with an improved scalability by several orders of magnitude. Our method attains a local quadratic convergence rate already for a number of samples that is close to the information theoretical limit. We show in numerical experiments that unlike many state-of-the-art approaches, our approach is able to complete very ill-conditioned matrices with a condition number of up to $10^{10}$ from few samples.
One of the most prominent methods for uncertainty quantification in high-dimen-sional statistics is the desparsified LASSO that relies on unconstrained $\ell_1$-minimization. The majority of initial works focused on real (sub-)Gaussian … One of the most prominent methods for uncertainty quantification in high-dimen-sional statistics is the desparsified LASSO that relies on unconstrained $\ell_1$-minimization. The majority of initial works focused on real (sub-)Gaussian designs. However, in many applications, such as magnetic resonance imaging (MRI), the measurement process possesses a certain structure due to the nature of the problem. The measurement operator in MRI can be described by a subsampled Fourier matrix. The purpose of this work is to extend the uncertainty quantification process using the desparsified LASSO to design matrices originating from a bounded orthonormal system, which naturally generalizes the subsampled Fourier case and also allows for the treatment of the case where the sparsity basis is not the standard basis. In particular we construct honest confidence intervals for every pixel of an MR image that is sparse in the standard basis provided the number of measurements satisfies $n \gtrsim\max\{ s\log^2 s\log p, s \log^2 p \}$ or that is sparse with respect to the Haar Wavelet basis provided a slightly larger number of measurements.
We propose an iterative algorithm for low-rank matrix completion that can be interpreted as an iteratively reweighted least squares (IRLS) algorithm, a saddle-escaping smoothing Newton method or a variable metric … We propose an iterative algorithm for low-rank matrix completion that can be interpreted as an iteratively reweighted least squares (IRLS) algorithm, a saddle-escaping smoothing Newton method or a variable metric proximal gradient method applied to a non-convex rank surrogate. It combines the favorable data-efficiency of previous IRLS approaches with an improved scalability by several orders of magnitude. We establish the first local convergence guarantee from a minimal number of samples for that class of algorithms, showing that the method attains a local quadratic convergence rate. Furthermore, we show that the linear systems to be solved are well-conditioned even for very ill-conditioned ground truth matrices. We provide extensive experiments, indicating that unlike many state-of-the-art approaches, our method is able to complete very ill-conditioned matrices with a condition number of up to $10^{10}$ from few samples, while being competitive in its scalability.
One of the most promising solutions for uncertainty quantification in high-dimensional statistics is the debiased LASSO that relies on unconstrained $\ell_1$-minimization. The initial works focused on real Gaussian designs as … One of the most promising solutions for uncertainty quantification in high-dimensional statistics is the debiased LASSO that relies on unconstrained $\ell_1$-minimization. The initial works focused on real Gaussian designs as a toy model for this problem. However, in medical imaging applications, such as compressive sensing for MRI, the measurement system is represented by a (subsampled) complex Fourier matrix. The purpose of this work is to extend the method to the MRI case in order to construct confidence intervals for each pixel of an MR image. We show that a sufficient amount of data is $n \gtrsim \max\{ s_0\log^2 s_0\log p, s_0 \log^2 p \}$.
In many applications, solutions of numerical problems are required to be non-negative, e.g., when retrieving pixel intensity values or physical densities of a substance. In this context, non-negative least squares … In many applications, solutions of numerical problems are required to be non-negative, e.g., when retrieving pixel intensity values or physical densities of a substance. In this context, non-negative least squares (NNLS) is a ubiquitous tool, e.g., when seeking sparse solutions of high-dimensional statistical problems. Despite vast efforts since the seminal work of Lawson and Hanson in the '70s, the non-negativity assumption is still an obstacle for the theoretical analysis and scalability of many off-the-shelf solvers. In the different context of deep neural networks, we recently started to see that the training of overparametrized models via gradient descent leads to surprising generalization properties and the retrieval of regularized solutions. In this paper, we prove that, by using an overparametrized formulation, NNLS solutions can reliably be approximated via vanilla gradient flow. We furthermore establish stability of the method against negative perturbations of the ground-truth. Our simulations confirm that this allows the use of vanilla gradient descent as a novel and scalable numerical solver for NNLS. From a conceptual point of view, our work proposes a novel approach to trading side-constraints in optimization problems against complexity of the optimization landscape, which does not build upon the concept of Lagrangian multipliers.
Model-based deep learning solutions to inverse problems have attracted increasing attention in recent years as they bridge state-of-the-art numerical performance with interpretability. In addition, the incorporated prior domain knowledge can … Model-based deep learning solutions to inverse problems have attracted increasing attention in recent years as they bridge state-of-the-art numerical performance with interpretability. In addition, the incorporated prior domain knowledge can make the training more efficient as the smaller number of parameters allows the training step to be executed with smaller datasets. Algorithm unrolling schemes stand out among these model-based learning techniques. Despite their rapid advancement and their close connection to traditional high-dimensional statistical methods, they lack certainty estimates and a theory for uncertainty quantification is still elusive. This work provides a step towards closing this gap proposing a rigorous way to obtain confidence intervals for the LISTA estimator.
We propose a new Iteratively Reweighted Least Squares (IRLS) algorithm for the problem of completing or denoising low-rank matrices that are structured, e.g., that possess a Hankel, Toeplitz or block-Hankel/Toeplitz … We propose a new Iteratively Reweighted Least Squares (IRLS) algorithm for the problem of completing or denoising low-rank matrices that are structured, e.g., that possess a Hankel, Toeplitz or block-Hankel/Toeplitz structure. The algorithm optimizes an objective based on a non-convex surrogate of the rank by solving a sequence of quadratic problems. Our strategy combines computational efficiency, as it operates on a lower dimensional generator space of the structured matrices, with high statistical accuracy which can be observed in experiments on hard estimation and completion tasks. Our experiments show that the proposed algorithm StrucHMIRLS exhibits an empirical recovery probability close to 1 from fewer samples than the state-of-the-art in a Hankel matrix completion task arising from the problem of spectral super-resolution of badly separated frequencies. Furthermore, we explain how the proposed algorithm for structured low-rank recovery can be used as preprocessing step for improved robustness in frequency or line spectrum estimation problems.
We propose a new Iteratively Reweighted Least Squares (IRLS) algorithm for the problem of completing or denoising low-rank matrices that are structured, e.g., that possess a Hankel, Toeplitz or block-Hankel/Toeplitz … We propose a new Iteratively Reweighted Least Squares (IRLS) algorithm for the problem of completing or denoising low-rank matrices that are structured, e.g., that possess a Hankel, Toeplitz or block-Hankel/Toeplitz structure. The algorithm optimizes an objective based on a non-convex surrogate of the rank by solving a sequence of quadratic problems. Our strategy combines computational efficiency, as it operates on a lower dimensional generator space of the structured matrices, with high statistical accuracy which can be observed in experiments on hard estimation and completion tasks. Our experiments show that the proposed algorithm StrucHMIRLS exhibits an empirical recovery probability close to 1 from fewer samples than the state-of-the-art in a Hankel matrix completion task arising from the problem of spectral super-resolution of badly separated frequencies. Furthermore, we explain how the proposed algorithm for structured low-rank recovery can be used as preprocessing step for improved robustness in frequency or line spectrum estimation problems.
Iteratively Reweighted Least Squares (IRLS), whose history goes back more than 80 years, represents an important family of algorithms for non-smooth optimization as it is able to optimize these problems … Iteratively Reweighted Least Squares (IRLS), whose history goes back more than 80 years, represents an important family of algorithms for non-smooth optimization as it is able to optimize these problems by solving a sequence of linear systems. In 2010, Daubechies, DeVore, Fornasier, and Gunturk proved that IRLS for $\ell_1$-minimization, an optimization program ubiquitous in the field of compressed sensing, globally converges to a sparse solution. While this algorithm has been popular in applications in engineering and statistics, fundamental algorithmic questions have remained unanswered. As a matter of fact, existing convergence guarantees only provide global convergence without any rate, except for the case that the support of the underlying signal has already been identified. In this paper, we prove that IRLS for $\ell_1$-minimization converges to a sparse solution with a global linear rate. We support our theory by numerical experiments indicating that our linear rate essentially captures the correct dimension dependence.
The recovery of sparse data is at the core of many applications in machine learning and signal processing. While such problems can be tackled using $\ell_1$-regularization as in the LASSO … The recovery of sparse data is at the core of many applications in machine learning and signal processing. While such problems can be tackled using $\ell_1$-regularization as in the LASSO estimator and in the Basis Pursuit approach, specialized algorithms are typically required to solve the corresponding high-dimensional non-smooth optimization for large instances. Iteratively Reweighted Least Squares (IRLS) is a widely used algorithm for this purpose due its excellent numerical performance. However, while existing theory is able to guarantee convergence of this algorithm to the minimizer, it does not provide a global convergence rate. In this paper, we prove that a variant of IRLS converges with a global linear rate to a sparse solution, i.e., with a linear error decrease occurring immediately from any initialization, if the measurements fulfill the usual null space property assumption. We support our theory by numerical experiments showing that our linear rate captures the correct dimension dependence. We anticipate that our theoretical findings will lead to new insights for many other use cases of the IRLS algorithm, such as in low-rank matrix recovery.
Model-based deep learning solutions to inverse problems have attracted increasing attention in recent years as they bridge state-of-the-art numerical performance with interpretability. In addition, the incorporated prior domain knowledge can … Model-based deep learning solutions to inverse problems have attracted increasing attention in recent years as they bridge state-of-the-art numerical performance with interpretability. In addition, the incorporated prior domain knowledge can make the training more efficient as the smaller number of parameters allows the training step to be executed with smaller datasets. Algorithm unrolling schemes stand out among these model-based learning techniques. Despite their rapid advancement and their close connection to traditional high-dimensional statistical methods, they lack certainty estimates and a theory for uncertainty quantification is still elusive. This work provides a step towards closing this gap proposing a rigorous way to obtain confidence intervals for the LISTA estimator.
What latent features are encoded in language model (LM) representations? Recent work on training sparse autoencoders (SAEs) to disentangle interpretable features in LM representations has shown significant promise. However, evaluating … What latent features are encoded in language model (LM) representations? Recent work on training sparse autoencoders (SAEs) to disentangle interpretable features in LM representations has shown significant promise. However, evaluating the quality of these SAEs is difficult because we lack a ground-truth collection of interpretable features that we expect good SAEs to recover. We thus propose to measure progress in interpretable dictionary learning by working in the setting of LMs trained on chess and Othello transcripts. These settings carry natural collections of interpretable features -- for example, "there is a knight on F3" -- which we leverage into $\textit{supervised}$ metrics for SAE quality. To guide progress in interpretable dictionary learning, we introduce a new SAE training technique, $\textit{p-annealing}$, which improves performance on prior unsupervised metrics as well as our new metrics.
Over the last few years, debiased estimators have been proposed in order to establish rigorous confidence intervals for high-dimensional problems in machine learning and data science. The core argument is … Over the last few years, debiased estimators have been proposed in order to establish rigorous confidence intervals for high-dimensional problems in machine learning and data science. The core argument is that the error of these estimators with respect to the ground truth can be expressed as a Gaussian variable plus a remainder term that vanishes as long as the dimension of the problem is sufficiently high. Thus, uncertainty quantification (UQ) can be performed exploiting the Gaussian model. Empirically, however, the remainder term cannot be neglected in many realistic situations of moderately-sized dimensions, in particular in certain structured measurement scenarios such as Magnetic Resonance Imaging (MRI). This, in turn, can downgrade the advantage of the UQ methods as compared to non-UQ approaches such as the standard LASSO. In this paper, we present a method to improve the debiased estimator by sampling without replacement. Our approach leverages recent results of ours on the structure of the random nature of certain sampling schemes showing how a transition between sampling with and without replacement can lead to a weighted reconstruction scheme with improved performance for the standard LASSO. In this paper, we illustrate how this reweighted sampling idea can also improve the debiased estimator and, consequently, provide a better method for UQ in Fourier imaging.
Uncertainty quantification (UQ) is a crucial but challenging task in many high-dimensional regression or learning problems to increase the confidence of a given predictor. We develop a new data-driven approach … Uncertainty quantification (UQ) is a crucial but challenging task in many high-dimensional regression or learning problems to increase the confidence of a given predictor. We develop a new data-driven approach for UQ in regression that applies both to classical regression approaches such as the LASSO as well as to neural networks. One of the most notable UQ techniques is the debiased LASSO, which modifies the LASSO to allow for the construction of asymptotic confidence intervals by decomposing the estimation error into a Gaussian and an asymptotically vanishing bias component. However, in real-world problems with finite-dimensional data, the bias term is often too significant to be neglected, resulting in overly narrow confidence intervals. Our work rigorously addresses this issue and derives a data-driven adjustment that corrects the confidence intervals for a large class of predictors by estimating the means and variances of the bias terms from training data, exploiting high-dimensional concentration phenomena. This gives rise to non-asymptotic confidence intervals, which can help avoid overestimating uncertainty in critical applications such as MRI diagnosis. Importantly, our analysis extends beyond sparse regression to data-driven predictors like neural networks, enhancing the reliability of model-based deep learning. Our findings bridge the gap between established theory and the practical applicability of such debiased methods.
What latent features are encoded in language model (LM) representations? Recent work on training sparse autoencoders (SAEs) to disentangle interpretable features in LM representations has shown significant promise. However, evaluating … What latent features are encoded in language model (LM) representations? Recent work on training sparse autoencoders (SAEs) to disentangle interpretable features in LM representations has shown significant promise. However, evaluating the quality of these SAEs is difficult because we lack a ground-truth collection of interpretable features that we expect good SAEs to recover. We thus propose to measure progress in interpretable dictionary learning by working in the setting of LMs trained on chess and Othello transcripts. These settings carry natural collections of interpretable features -- for example, "there is a knight on F3" -- which we leverage into $\textit{supervised}$ metrics for SAE quality. To guide progress in interpretable dictionary learning, we introduce a new SAE training technique, $\textit{p-annealing}$, which improves performance on prior unsupervised metrics as well as our new metrics.
Over the last few years, debiased estimators have been proposed in order to establish rigorous confidence intervals for high-dimensional problems in machine learning and data science. The core argument is … Over the last few years, debiased estimators have been proposed in order to establish rigorous confidence intervals for high-dimensional problems in machine learning and data science. The core argument is that the error of these estimators with respect to the ground truth can be expressed as a Gaussian variable plus a remainder term that vanishes as long as the dimension of the problem is sufficiently high. Thus, uncertainty quantification (UQ) can be performed exploiting the Gaussian model. Empirically, however, the remainder term cannot be neglected in many realistic situations of moderately-sized dimensions, in particular in certain structured measurement scenarios such as Magnetic Resonance Imaging (MRI). This, in turn, can downgrade the advantage of the UQ methods as compared to non-UQ approaches such as the standard LASSO. In this paper, we present a method to improve the debiased estimator by sampling without replacement. Our approach leverages recent results of ours on the structure of the random nature of certain sampling schemes showing how a transition between sampling with and without replacement can lead to a weighted reconstruction scheme with improved performance for the standard LASSO. In this paper, we illustrate how this reweighted sampling idea can also improve the debiased estimator and, consequently, provide a better method for UQ in Fourier imaging.
Uncertainty quantification (UQ) is a crucial but challenging task in many high-dimensional regression or learning problems to increase the confidence of a given predictor. We develop a new data-driven approach … Uncertainty quantification (UQ) is a crucial but challenging task in many high-dimensional regression or learning problems to increase the confidence of a given predictor. We develop a new data-driven approach for UQ in regression that applies both to classical regression approaches such as the LASSO as well as to neural networks. One of the most notable UQ techniques is the debiased LASSO, which modifies the LASSO to allow for the construction of asymptotic confidence intervals by decomposing the estimation error into a Gaussian and an asymptotically vanishing bias component. However, in real-world problems with finite-dimensional data, the bias term is often too significant to be neglected, resulting in overly narrow confidence intervals. Our work rigorously addresses this issue and derives a data-driven adjustment that corrects the confidence intervals for a large class of predictors by estimating the means and variances of the bias terms from training data, exploiting high-dimensional concentration phenomena. This gives rise to non-asymptotic confidence intervals, which can help avoid overestimating uncertainty in critical applications such as MRI diagnosis. Importantly, our analysis extends beyond sparse regression to data-driven predictors like neural networks, enhancing the reliability of model-based deep learning. Our findings bridge the gap between established theory and the practical applicability of such debiased methods.
Model-based deep learning solutions to inverse problems have attracted increasing attention in recent years as they bridge state-of-the-art numerical performance with interpretability. In addition, the incorporated prior domain knowledge can … Model-based deep learning solutions to inverse problems have attracted increasing attention in recent years as they bridge state-of-the-art numerical performance with interpretability. In addition, the incorporated prior domain knowledge can make the training more efficient as the smaller number of parameters allows the training step to be executed with smaller datasets. Algorithm unrolling schemes stand out among these model-based learning techniques. Despite their rapid advancement and their close connection to traditional high-dimensional statistical methods, they lack certainty estimates and a theory for uncertainty quantification is still elusive. This work provides a step towards closing this gap proposing a rigorous way to obtain confidence intervals for the LISTA estimator.
One of the most promising solutions for uncertainty quantification in high-dimensional statistics is the debiased LASSO that relies on unconstrained $\ell_1$-minimization. The initial works focused on real Gaussian designs as … One of the most promising solutions for uncertainty quantification in high-dimensional statistics is the debiased LASSO that relies on unconstrained $\ell_1$-minimization. The initial works focused on real Gaussian designs as a toy model for this problem. However, in medical imaging applications, such as compressive sensing for MRI, the measurement system is represented by a (subsampled) complex Fourier matrix. The purpose of this work is to extend the method to the MRI case in order to construct confidence intervals for each pixel of an MR image. We show that a sufficient amount of data is $n \gtrsim \max\{ s_0\log^2 s_0\log p, s_0 \log^2 p \}$.
Model-based deep learning solutions to inverse problems have attracted increasing attention in recent years as they bridge state-of-the-art numerical performance with interpretability. In addition, the incorporated prior domain knowledge can … Model-based deep learning solutions to inverse problems have attracted increasing attention in recent years as they bridge state-of-the-art numerical performance with interpretability. In addition, the incorporated prior domain knowledge can make the training more efficient as the smaller number of parameters allows the training step to be executed with smaller datasets. Algorithm unrolling schemes stand out among these model-based learning techniques. Despite their rapid advancement and their close connection to traditional high-dimensional statistical methods, they lack certainty estimates and a theory for uncertainty quantification is still elusive. This work provides a step towards closing this gap proposing a rigorous way to obtain confidence intervals for the LISTA estimator.
One of the most prominent methods for uncertainty quantification in high-dimen-sional statistics is the desparsified LASSO that relies on unconstrained $\ell_1$-minimization. The majority of initial works focused on real (sub-)Gaussian … One of the most prominent methods for uncertainty quantification in high-dimen-sional statistics is the desparsified LASSO that relies on unconstrained $\ell_1$-minimization. The majority of initial works focused on real (sub-)Gaussian designs. However, in many applications, such as magnetic resonance imaging (MRI), the measurement process possesses a certain structure due to the nature of the problem. The measurement operator in MRI can be described by a subsampled Fourier matrix. The purpose of this work is to extend the uncertainty quantification process using the desparsified LASSO to design matrices originating from a bounded orthonormal system, which naturally generalizes the subsampled Fourier case and also allows for the treatment of the case where the sparsity basis is not the standard basis. In particular we construct honest confidence intervals for every pixel of an MR image that is sparse in the standard basis provided the number of measurements satisfies $n \gtrsim\max\{ s\log^2 s\log p, s \log^2 p \}$ or that is sparse with respect to the Haar Wavelet basis provided a slightly larger number of measurements.
In many applications, solutions of numerical problems are required to be non-negative, e.g., when retrieving pixel intensity values or physical densities of a substance. In this context, non-negative least squares … In many applications, solutions of numerical problems are required to be non-negative, e.g., when retrieving pixel intensity values or physical densities of a substance. In this context, non-negative least squares (NNLS) is a ubiquitous tool, e.g., when seeking sparse solutions of high-dimensional statistical problems. Despite vast efforts since the seminal work of Lawson and Hanson in the '70s, the non-negativity assumption is still an obstacle for the theoretical analysis and scalability of many off-the-shelf solvers. In the different context of deep neural networks, we recently started to see that the training of overparametrized models via gradient descent leads to surprising generalization properties and the retrieval of regularized solutions. In this paper, we prove that, by using an overparametrized formulation, NNLS solutions can reliably be approximated via vanilla gradient flow. We furthermore establish stability of the method against negative perturbations of the ground-truth. Our simulations confirm that this allows the use of vanilla gradient descent as a novel and scalable numerical solver for NNLS. From a conceptual point of view, our work proposes a novel approach to trading side-constraints in optimization problems against complexity of the optimization landscape, which does not build upon the concept of Lagrangian multipliers.
The recovery of sparse data is at the core of many applications in machine learning and signal processing. While such problems can be tackled using $\ell_1$-regularization as in the LASSO … The recovery of sparse data is at the core of many applications in machine learning and signal processing. While such problems can be tackled using $\ell_1$-regularization as in the LASSO estimator and in the Basis Pursuit approach, specialized algorithms are typically required to solve the corresponding high-dimensional non-smooth optimization for large instances. Iteratively Reweighted Least Squares (IRLS) is a widely used algorithm for this purpose due its excellent numerical performance. However, while existing theory is able to guarantee convergence of this algorithm to the minimizer, it does not provide a global convergence rate. In this paper, we prove that a variant of IRLS converges with a global linear rate to a sparse solution, i.e., with a linear error decrease occurring immediately from any initialization, if the measurements fulfill the usual null space property assumption. We support our theory by numerical experiments showing that our linear rate captures the correct dimension dependence. We anticipate that our theoretical findings will lead to new insights for many other use cases of the IRLS algorithm, such as in low-rank matrix recovery.
We propose an iterative algorithm for low-rank matrix completion that can be interpreted as an iteratively reweighted least squares (IRLS) algorithm, a saddle-escaping smoothing Newton method or a variable metric … We propose an iterative algorithm for low-rank matrix completion that can be interpreted as an iteratively reweighted least squares (IRLS) algorithm, a saddle-escaping smoothing Newton method or a variable metric proximal gradient method applied to a non-convex rank surrogate. It combines the favorable data-efficiency of previous IRLS approaches with an improved scalability by several orders of magnitude. We establish the first local convergence guarantee from a minimal number of samples for that class of algorithms, showing that the method attains a local quadratic convergence rate. Furthermore, we show that the linear systems to be solved are well-conditioned even for very ill-conditioned ground truth matrices. We provide extensive experiments, indicating that unlike many state-of-the-art approaches, our method is able to complete very ill-conditioned matrices with a condition number of up to $10^{10}$ from few samples, while being competitive in its scalability.
Iteratively Reweighted Least Squares (IRLS), whose history goes back more than 80 years, represents an important family of algorithms for non-smooth optimization as it is able to optimize these problems … Iteratively Reweighted Least Squares (IRLS), whose history goes back more than 80 years, represents an important family of algorithms for non-smooth optimization as it is able to optimize these problems by solving a sequence of linear systems. In 2010, Daubechies, DeVore, Fornasier, and Gunturk proved that IRLS for $\ell_1$-minimization, an optimization program ubiquitous in the field of compressed sensing, globally converges to a sparse solution. While this algorithm has been popular in applications in engineering and statistics, fundamental algorithmic questions have remained unanswered. As a matter of fact, existing convergence guarantees only provide global convergence without any rate, except for the case that the support of the underlying signal has already been identified. In this paper, we prove that IRLS for $\ell_1$-minimization converges to a sparse solution with a global linear rate. We support our theory by numerical experiments indicating that our linear rate essentially captures the correct dimension dependence.
We propose an iterative algorithm for low-rank matrix completion that can be interpreted as both an iteratively reweighted least squares (IRLS) algorithm and a saddle-escaping smoothing Newton method applied to … We propose an iterative algorithm for low-rank matrix completion that can be interpreted as both an iteratively reweighted least squares (IRLS) algorithm and a saddle-escaping smoothing Newton method applied to a non-convex rank surrogate objective. It combines the favorable data efficiency of previous IRLS approaches with an improved scalability by several orders of magnitude. Our method attains a local quadratic convergence rate already for a number of samples that is close to the information theoretical limit. We show in numerical experiments that unlike many state-of-the-art approaches, our approach is able to complete very ill-conditioned matrices with a condition number of up to $10^{10}$ from few samples.
The recovery of sparse data is at the core of many applications in machine learning and signal processing. While such problems can be tackled using $\ell_1$-regularization as in the LASSO … The recovery of sparse data is at the core of many applications in machine learning and signal processing. While such problems can be tackled using $\ell_1$-regularization as in the LASSO estimator and in the Basis Pursuit approach, specialized algorithms are typically required to solve the corresponding high-dimensional non-smooth optimization for large instances. Iteratively Reweighted Least Squares (IRLS) is a widely used algorithm for this purpose due its excellent numerical performance. However, while existing theory is able to guarantee convergence of this algorithm to the minimizer, it does not provide a global convergence rate. In this paper, we prove that a variant of IRLS converges with a global linear rate to a sparse solution, i.e., with a linear error decrease occurring immediately from any initialization, if the measurements fulfill the usual null space property assumption. We support our theory by numerical experiments showing that our linear rate captures the correct dimension dependence. We anticipate that our theoretical findings will lead to new insights for many other use cases of the IRLS algorithm, such as in low-rank matrix recovery.
We propose a new Iteratively Reweighted Least Squares (IRLS) algorithm for the problem of completing or denoising low-rank matrices that are structured, e.g., that possess a Hankel, Toeplitz or block-Hankel/Toeplitz … We propose a new Iteratively Reweighted Least Squares (IRLS) algorithm for the problem of completing or denoising low-rank matrices that are structured, e.g., that possess a Hankel, Toeplitz or block-Hankel/Toeplitz structure. The algorithm optimizes an objective based on a non-convex surrogate of the rank by solving a sequence of quadratic problems. Our strategy combines computational efficiency, as it operates on a lower dimensional generator space of the structured matrices, with high statistical accuracy which can be observed in experiments on hard estimation and completion tasks. Our experiments show that the proposed algorithm StrucHMIRLS exhibits an empirical recovery probability close to 1 from fewer samples than the state-of-the-art in a Hankel matrix completion task arising from the problem of spectral super-resolution of badly separated frequencies. Furthermore, we explain how the proposed algorithm for structured low-rank recovery can be used as preprocessing step for improved robustness in frequency or line spectrum estimation problems.
We propose a new Iteratively Reweighted Least Squares (IRLS) algorithm for the problem of completing or denoising low-rank matrices that are structured, e.g., that possess a Hankel, Toeplitz or block-Hankel/Toeplitz … We propose a new Iteratively Reweighted Least Squares (IRLS) algorithm for the problem of completing or denoising low-rank matrices that are structured, e.g., that possess a Hankel, Toeplitz or block-Hankel/Toeplitz structure. The algorithm optimizes an objective based on a non-convex surrogate of the rank by solving a sequence of quadratic problems. Our strategy combines computational efficiency, as it operates on a lower dimensional generator space of the structured matrices, with high statistical accuracy which can be observed in experiments on hard estimation and completion tasks. Our experiments show that the proposed algorithm StrucHMIRLS exhibits an empirical recovery probability close to 1 from fewer samples than the state-of-the-art in a Hankel matrix completion task arising from the problem of spectral super-resolution of badly separated frequencies. Furthermore, we explain how the proposed algorithm for structured low-rank recovery can be used as preprocessing step for improved robustness in frequency or line spectrum estimation problems.