Tomas Geffner

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Energy-Based Diffusion Language Models for Text Generation 2024 Minkai Xu
Tomas Geffner
Karsten Kreis
Weili Nie
Yilun Xu
Jure Leskovec
Stefano Ermon
Arash Vahdat
+ PDF Chat Truncated Consistency Models 2024 Sangyun Lee
Yan Xu
Tomas Geffner
Giulia Fanti
Karsten Kreis
Arash Vahdat
Weili Nie
+ PDF Chat Stochastic Flow Matching for Resolving Small-Scale Physics 2024 Stathi Fotiadis
Noah Brenowitz
Tomas Geffner
Yair Cohen
Michael S. Pritchard
Arash Vahdat
Morteza Mardani
+ PDF Chat Aligning Target-Aware Molecule Diffusion Models with Exact Energy Optimization 2024 Siyi Gu
Minkai Xu
Alexander K. Powers
Weili Nie
Tomas Geffner
Karsten Kreis
Jure Leskovec
Arash Vahdat
Stefano Ermon
+ Variational Inference with Locally Enhanced Bounds for Hierarchical Models 2022 Tomas Geffner
Justin Domke
+ Deep End-to-end Causal Inference 2022 Tomas Geffner
Javier Antorán
Adam S. Foster
Wenbo Gong
Chao Ma
Emre Kıcıman
Amit Sharma
Angus Lamb
Martin Kukla
Nick Pawlowski
+ Langevin Diffusion Variational Inference 2022 Tomas Geffner
Justin Domke
+ Compositional Score Modeling for Simulation-based Inference 2022 Tomas Geffner
George Papamakarios
Andriy Mnih
+ Joint control variate for faster black-box variational inference 2022 Xi Wang
Tomas Geffner
Justin Domke
+ MCMC Variational Inference via Uncorrected Hamiltonian Annealing 2021 Tomas Geffner
Justin Domke
+ Empirical Evaluation of Biased Methods for Alpha Divergence Minimization 2021 Tomas Geffner
Justin Domke
+ MCMC Variational Inference via Uncorrected Hamiltonian Annealing 2021 Tomas Geffner
Justin Domke
+ Empirical Evaluation of Biased Methods for Alpha Divergence Minimization 2020 Tomas Geffner
Justin Domke
+ On the Difficulty of Unbiased Alpha Divergence Minimization 2020 Tomas Geffner
Justin Domke
+ Approximation Based Variance Reduction for Reparameterization Gradients 2020 Tomas Geffner
Justin Domke
+ On the Difficulty of Unbiased Alpha Divergence Minimization 2020 Tomas Geffner
Justin Domke
+ A Rule for Gradient Estimator Selection, with an Application to Variational Inference. 2019 Tomas Geffner
Justin Domke
+ A Rule for Gradient Estimator Selection, with an Application to Variational Inference. 2019 Tomas Geffner
Justin Domke
+ A Rule for Gradient Estimator Selection, with an Application to Variational Inference 2019 Tomas Geffner
Justin Domke
+ PDF Chat Compact Policies for Fully Observable Non-Deterministic Planning as SAT 2018 Tomas Geffner
Héctor Geffner
+ Compact Policies for Fully Observable Non-Deterministic Planning as SAT. 2018 Tomas Geffner
Héctor Geffner
+ Using Large Ensembles of Control Variates for Variational Inference 2018 Tomas Geffner
Justin Domke
+ Using Large Ensembles of Control Variates for Variational Inference 2018 Tomas Geffner
Justin Domke
+ Compact Policies for Fully-Observable Non-Deterministic Planning as SAT 2018 Tomas Geffner
Héctor Geffner
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Stochastic Backpropagation and Approximate Inference in Deep Generative Models 2014 Danilo Jimenez Rezende
Shakir Mohamed
Daan Wierstra
4
+ Variational Inference: A Review for Statisticians 2017 David M. Blei
Alp Kucukelbir
Jon McAuliffe
4
+ Black Box Variational Inference 2014 Rajesh Ranganath
Sean Gerrish
David M. Blei
3
+ Importance Weighted Autoencoders 2015 Yuri Burda
Roger Grosse
Ruslan Salakhutdinov
3
+ Variational Bayesian Inference with Stochastic Search 2012 John Paisley
David M. Blei
Michael I. Jordan
3
+ The Generalized Reparameterization Gradient 2016 Francisco J. R. Ruiz
Michalis K. Titsias
David M. Blei
3
+ Doubly Reparameterized Gradient Estimators for Monte Carlo Objectives 2019 George Tucker
Dieterich Lawson
Shixiang Gu
Christopher Maddison
3
+ Advances in Variational Inference 2017 Cheng Zhang
Judith Bütepage
Hedvig Kjellström
Stephan Mandt
3
+ Markovian Score Climbing: Variational Inference with KL(p||q) 2020 Christian A. Naesseth
Fredrik Lindsten
David M. Blei
2
+ Variational Inference via $\chi$ Upper Bound Minimization 2017 Adji B. Dieng
Dustin Tran
Rajesh Ranganath
John Paisley
David M. Blei
2
+ Optimization Methods for Large-Scale Machine Learning 2018 Léon Bottou
Frank E. Curtis
Jorge Nocedal
2
+ The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables 2016 Chris J. Maddison
Andriy Mnih
Yee Whye Teh
2
+ PDF Chat <i>Stan</i>: A Probabilistic Programming Language 2017 Bob Carpenter
Andrew Gelman
Matthew D. Hoffman
Daniel C. Lee
Ben Goodrich
Michael Betancourt
Marcus A. Brubaker
Jiqiang Guo
Peter Li
Allen Riddell
2
+ Overdispersed Black-Box Variational Inference 2016 Francisco J. R. Ruiz
Michalis K. Titsias
David M. Blei
2
+ Variational Bayesian Inference with Stochastic Search 2012 David M. Blei
Michael I. Jordan
John Paisley
2
+ Using Large Ensembles of Control Variates for Variational Inference 2018 Tomas Geffner
Justin Domke
2
+ Categorical Reparameterization with Gumbel-Softmax 2016 Eric Jang
Shixiang Gu
Ben Poole
2
+ Reweighted Wake-Sleep 2014 Jörg Bornschein
Yoshua Bengio
2
+ Edward: A library for probabilistic modeling, inference, and criticism 2016 Dustin Tran
Alp Kucukelbir
Adji B. Dieng
Maja Rudolph
Dawen Liang
David M. Blei
1
+ Improving Variational Auto-Encoders using Householder Flow 2016 Jakub M. Tomczak
Max Welling
1
+ PDF Chat Gaussian Variational Approximation With a Factor Covariance Structure 2017 Victor M.-H. Ong
David J. Nott
Michael S. Smith
1
+ Approximate Inference with Amortised MCMC 2017 Yingzhen Li
Richard E. Turner
Qiang Liu
1
+ Sticking the Landing: An Asymptotically Zero-Variance Gradient Estimator for Variational Inference. 2017 Geoffrey Roeder
Yuhuai Wu
David Duvenaud
1
+ Reinterpreting Importance-Weighted Autoencoders 2017 Chris Cremer
Quaid Morris
David Duvenaud
1
+ Generalized Planning: Non-Deterministic Abstractions and Trajectory Constraints 2017 Blai Bonet
Giuseppe De Giacomo
Héctor Geffner
Sasha Rubin
1
+ Sticking the Landing: Simple, Lower-Variance Gradient Estimators for Variational Inference 2017 Geoffrey Roeder
Yuhuai Wu
David Duvenaud
1
+ Backpropagation through the Void: Optimizing control variates for black-box gradient estimation 2017 Will Grathwohl
Dami Choi
Yuhuai Wu
Geoffrey Roeder
David Duvenaud
1
+ Alpha-Beta Divergence For Variational Inference 2018 Jean-Baptiste Regli
Ricardo Silva
1
+ Variational Inference with Tail-adaptive f-Divergence 2018 Dilin Wang
Hao Liu
Qiang Liu
1
+ Improving Explorability in Variational Inference with Annealed Variational Objectives 2018 Chin-Wei Huang
Shawn Tan
Alexandre Lacoste
Aaron Courville
1
+ Deep Learning for Classical Japanese Literature 2018 Alex Lamb
Asanobu Kitamoto
David Ha
Kazuaki Yamamoto
Mikel Bober-Irizar
Tarin Clanuwat
1
+ Reducing Reparameterization Gradient Variance 2017 Andrew C. Miller
Nicholas J. Foti
Alexander D’Amour
Ryan P. Adams
1
+ Neural Variational Inference and Learning in Belief Networks 2014 Andriy Mnih
Karol Gregor
1
+ Monte Carlo Gradient Estimation in Machine Learning 2019 Shakir Mohamed
Mihaela Rosca
Michael Figurnov
Andriy Mnih
1
+ The geometric foundations of Hamiltonian Monte Carlo 2017 Michael Betancourt
Simon Byrne
Samuel Livingstone
Mark Girolami
1
+ PDF Chat Advances in Variational Inference 2018 Cheng Zhang
Judith Bütepage
Hedvig Kjellström
Stephan Mandt
1
+ A symbolic SAT-based algorithm for almost-sure reachability with small strategies in POMDPs 2016 Krishnendu Chatterjee
Martin Chmelík
Jessica Davies
1
+ Measuring the reliability of MCMC inference with bidirectional Monte Carlo 2016 Roger Grosse
Siddharth Ancha
Daniel M. Roy
1
+ Hamiltonian Variational Auto-Encoder 2018 Anthony L. Caterini
Arnaud Doucet
Dino Sejdinović
1
+ The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo 2014 Matthew D. Homan
Andrew Gelman
1
+ Adam: A Method for Stochastic Optimization 2014 Diederik P. Kingma
Jimmy Ba
1
+ Underdamped Langevin MCMC: A non-asymptotic analysis 2017 Xiang Cheng
Niladri S. Chatterji
Peter L. Bartlett
Michael I. Jordan
1
+ On importance-weighted autoencoders 2019 Axel Finke
Alexandre H. Thiéry
1
+ Learning Deep Generative Models with Annealed Importance Sampling 2019 Xinqiang Ding
David J. Freedman
1
+ Amortized variance reduction for doubly stochastic objectives 2020 Ayman Boustati
Sattar Vakili
James Hensman
St. John
1
+ f-Divergence Variational Inference 2020 Neng Wan
Dapeng Li
Naira Hovakimyan
1
+ On the Difficulty of Unbiased Alpha Divergence Minimization 2020 Tomas Geffner
Justin Domke
1
+ Empirical Evaluation of Biased Methods for Alpha Divergence Minimization 2021 Tomas Geffner
Justin Domke
1
+ None 2000 Tommi Jaakkola
Michael I. Jordan
1
+ Monte Carlo Variational Auto-Encoders 2021 Achille Thin
Nikita Kotelevskii
Arnaud Doucet
Alain Durmus
Éric Moulines
Maxim Panov
1