Peizhong Ju

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat BeST -- A Novel Source Selection Metric for Transfer Learning 2025 Ashutosh Soni
Peizhong Ju
Atilla Eryılmaz
Ness B. Shroff
+ PDF Chat PSMGD: Periodic Stochastic Multi-Gradient Descent for Fast Multi-Objective Optimization 2024 Minghua Xu
Peizhong Ju
Jia Liu
Haibo Yang
+ PDF Chat How to Find the Exact Pareto Front for Multi-Objective MDPs? 2024 Yining Li
Peizhong Ju
Ness B. Shroff
+ PDF Chat Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers 2024 Yuchen Liang
Peizhong Ju
Yingbin Liang
Ness B. Shroff
+ PDF Chat Can We Theoretically Quantify the Impacts of Local Updates on the Generalization Performance of Federated Learning? 2024 Peizhong Ju
Haibo Yang
Jia Liu
Yingbin Liang
Ness B. Shroff
+ PDF Chat Non-asymptotic Convergence of Discrete-time Diffusion Models: New Approach and Improved Rate 2024 Yuchen Liang
Peizhong Ju
Yingbin Liang
Ness B. Shroff
+ Theory on Forgetting and Generalization of Continual Learning 2023 Sen Lin
Peizhong Ju
Yingbin Liang
Ness B. Shroff
+ Theoretical Characterization of the Generalization Performance of Overfitted Meta-Learning 2023 Peizhong Ju
Yingbin Liang
Ness B. Shroff
+ Achieving Fairness in Multi-Agent Markov Decision Processes Using Reinforcement Learning 2023 Peizhong Ju
Arnob Ghosh
Ness B. Shroff
+ Generalization Performance of Transfer Learning: Overparameterized and Underparameterized Regimes 2023 Peizhong Ju
Sen Lin
Mark S. Squillante
Yingbin Liang
Ness B. Shroff
+ Achieving Sample and Computational Efficient Reinforcement Learning by Action Space Reduction via Grouping 2023 Yining Li
Peizhong Ju
Ness B. Shroff
+ On the Generalization Power of the Overfitted Three-Layer Neural Tangent Kernel Model 2022 Peizhong Ju
Xiaojun Lin
Ness B. Shroff
+ On the Generalization Power of Overfitted Two-Layer Neural Tangent Kernel Models 2021 Peizhong Ju
Xiaojun Lin
Ness B. Shroff
+ Overfitting Can Be Harmless for Basis Pursuit, But Only to a Degree 2020 Peizhong Ju
Xiaojun Lin
Jia Liu
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Two Models of Double Descent for Weak Features 2020 Mikhail A. Belkin
Daniel Hsu
Ji Xu
2
+ Understanding deep learning requires rethinking generalization 2016 Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
2
+ The generalization error of random features regression: Precise asymptotics and double descent curve 2019 Mei Song
Andrea Montanari
2
+ High-dimensional dynamics of generalization error in neural networks 2020 Madhu Advani
Andrew Saxe
Haim Sompolinsky
2
+ On the stability of inverse problems 1943 Andreĭ Nikolaevich Tikhonov
2
+ PDF Chat Harmless interpolation of noisy data in regression 2019 V. Sai Muthukumar
Kailas Vodrahalli
Anant Sahai
2
+ Benign overfitting in linear regression 2020 Peter L. Bartlett
Philip M. Long
Gábor Lugosi
Alexander Tsigler
2
+ PDF Chat Simultaneous analysis of Lasso and Dantzig selector 2009 Peter J. Bickel
Ya’acov Ritov
Alexandre B. Tsybakov
1
+ Special Functions and the Theory of Group Representations 1968 N. I︠a︡. Vilenkin
1
+ Regression Shrinkage and Selection Via the Lasso 1996 Robert Tibshirani
1
+ On Model Selection Consistency of Lasso 2006 Peng Zhao
Bin Yu
1
+ Concise Formulas for the Area and Volume of a Hyperspherical Cap 2010 S. Li
1
+ High-dimensional dynamics of generalization error in neural networks 2017 Madhu Advani
Andrew Saxe
1
+ Neural Tangent Kernel: Convergence and Generalization in Neural Networks 2018 Arthur Paul Jacot
Franck Gabriel
Clément Hongler
1
+ Reconciling modern machine learning and the bias-variance trade-off 2018 Mikhail Belkin
Daniel Hsu
Siyuan Ma
Soumik Mandal
1
+ Uniform Laws of Large Numbers 1996 Luc Devroye
László Györfi
Gábor Lugosi
1
+ Decoupling Gating from Linearity 2019 Jonathan Fiat
Eran Malach
Shai Shalev‐Shwartz
1
+ Surprises in high-dimensional ridgeless least squares interpolation 2022 Trevor Hastie
Andrea Montanari
Saharon Rosset
Ryan J. Tibshirani
1
+ Harmless interpolation of noisy data in regression 2019 V. Sai Muthukumar
Kailas Vodrahalli
Vignesh Subramanian
Anant Sahai
1
+ Linearized two-layers neural networks in high dimension 2019 Behrooz Ghorbani
Mei Song
Theodor Misiakiewicz
Andrea Montanari
1
+ The Convergence Rate of Neural Networks for Learned Functions of Different Frequencies 2019 Ronen Basri
David Jacobs
Yoni Kasten
Shira Kritchman
1
+ Understanding overfitting peaks in generalization error: Analytical risk curves for $l_2$ and $l_1$ penalized interpolation 2019 Partha P. Mitra
1
+ Learning Overparameterized Neural Networks via Stochastic Gradient Descent on Structured Data 2018 Yuanzhi Li
Yingyu Liang
1
+ PDF Chat Adaptive estimation of a quadratic functional by model selection 2000 Béatrice Laurent
Pascal Massart
1
+ Benefits of depth in neural networks 2016 Matus Telgarsky
1
+ PDF Chat A mean field view of the landscape of two-layer neural networks 2018 Mei Song
Andrea Montanari
Phan-Minh Nguyen
1
+ Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks 2019 Sanjeev Arora
Simon S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
1
+ Polylogarithmic width suffices for gradient descent to achieve arbitrarily small test error with shallow ReLU networks 2019 Ziwei Ji
Matus Telgarsky
1
+ Neural tangent kernels, transportation mappings, and universal approximation 2019 Ziwei Ji
Matus Telgarsky
Ruicheng Xian
1
+ Overfitting Can Be Harmless for Basis Pursuit, But Only to a Degree 2020 Peizhong Ju
Xiaojun Lin
Jia Liu
1
+ Double Trouble in Double Descent : Bias and Variance(s) in the Lazy Regime 2020 Stéphane d’Ascoli
Maria Refinetti
Giulio Biroli
Florent Krząkała
1
+ Integral and series representations of the dirac delta function 2008 Yutian Li
R. Wong
1
+ PDF Chat A random matrix analysis of random Fourier features: beyond the Gaussian kernel, a precise phase transition, and the corresponding double descent* 2021 Zhenyu Liao
Romain Couillet
Michael W. Mahoney
1
+ PDF Chat Lasso-type recovery of sparse representations for high-dimensional data 2009 Nicolai Meinshausen
Bin Yu
1
+ The Dynamics of Gradient Descent for Overparametrized Neural Networks 2021 Siddhartha Satpathi
R. Srikant
1
+ Surprises in High-Dimensional Ridgeless Least Squares Interpolation 2019 Trevor Hastie
Andrea Montanari
Saharon Rosset
Ryan J. Tibshirani
1
+ Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers 2018 Zeyuan Allen-Zhu
Yuanzhi Li
Yingyu Liang
1
+ Gradient Descent Provably Optimizes Over-parameterized Neural Networks 2018 Simon S. Du
Xiyu Zhai
Barnabás Póczos
Aarti Singh
1
+ To understand deep learning we need to understand kernel learning 2018 Mikhail Belkin
Siyuan Ma
Soumik Mandal
1
+ Stochastic Gradient/Mirror Descent: Minimax Optimality and Implicit Regularization 2018 Navid Azizan
Babak Hassibi
1
+ A large-deviation inequality for vector-valued martingales 2003 Thomas P. Hayes
1
+ Pattern Recognition and Machine Learning 2007 Christopher Bishop
1
+ The incomplete beta function ? a historical profile 1981 Jacques Dutka
1
+ Ridge Regression: Biased Estimation for Nonorthogonal Problems 2000 Arthur E. Hoerl
Robert W. Kennard
1
+ Extension of Euler's beta function 1997 M. A. Chaudhry
Asghar Qadir
M. Mujahid Rafique
Syed M. Zubair
1
+ Uncertainty principles and ideal atomic decomposition 2001 David L. Donoho
Xiaoming Huo
1