Shichang Tang

Follow

Generating author description...

Common Coauthors
Coauthor Papers Together
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat StarGAN: Unified Generative Adversarial Networks for Multi-domain Image-to-Image Translation 2018 Yunjey Choi
Minje Choi
Munyoung Kim
Jung-Woo Ha
Sunghun Kim
Jaegul Choo
2
+ Residual Flows for Invertible Generative Modeling 2019 Ricky T. Q. Chen
Jens Behrmann
David Duvenaud
Jörn-Henrik Jacobsen
2
+ PDF Chat ImageNet Large Scale Visual Recognition Challenge 2015 Olga Russakovsky
Jia Deng
Hao Su
Jonathan Krause
Sanjeev Satheesh
Sean Ma
Zhiheng Huang
Andrej Karpathy
Aditya Khosla
Michael S. Bernstein
2
+ PDF Chat Stacked Generative Adversarial Networks 2017 Xun Huang
Yixuan Li
Omid Poursaeed
John E. Hopcroft
Serge Belongie
2
+ Towards Principled Methods for Training Generative Adversarial Networks 2017 Martín Arjovsky
Léon Bottou
2
+ NIPS 2016 Tutorial: Generative Adversarial Networks 2017 Ian Goodfellow
2
+ PDF Chat Least Squares Generative Adversarial Networks 2017 Xudong Mao
Qing Li
Haoran Xie
Raymond Y.K. Lau
Zhen Wang
Stephen Paul Smolley
2
+ Which Training Methods for GANs do actually Converge? 2018 Lars Mescheder
Andreas Geiger
Sebastian Nowozin
2
+ PDF Chat AutoGAN: Neural Architecture Search for Generative Adversarial Networks 2019 Xinyu Gong
Shiyu Chang
Yifan Jiang
Zhangyang Wang
2
+ LOGAN: Latent Optimisation for Generative Adversarial Networks 2019 Yan Wu
Jeff Donahue
David Balduzzi
Karen Simonyan
Timothy Lillicrap
2
+ Consistency Regularization for Generative Adversarial Networks 2019 Han Zhang
Zizhao Zhang
Augustus Odena
Honglak Lee
2
+ PDF Chat Rethinking the Inception Architecture for Computer Vision 2016 Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jon Shlens
Zbigniew Wojna
2
+ PDF Chat A Style-Based Generator Architecture for Generative Adversarial Networks 2019 Tero Karras
Samuli Laine
Timo Aila
2
+ PDF Chat Multi-agent Diverse Generative Adversarial Networks 2018 Arnab Ghosh
Viveka Kulharia
Vinay P. Namboodiri
Philip H. S. Torr
Puneet K. Dokania
2
+ Do GANs actually learn the distribution? An empirical study 2017 Sanjeev Arora
Yi Zhang
2
+ Improved Techniques for Training GANs 2016 Tim Salimans
Ian Goodfellow
Wojciech Zaremba
Vicki Cheung
Alec Radford
Xi Chen
2
+ Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift 2015 Sergey Ioffe
Christian Szegedy
2
+ GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium 2017 Martin Heusel
Hubert Ramsauer
Thomas Unterthiner
Bernhard Nessler
Sepp Hochreiter
1
+ Adam: A Method for Stochastic Optimization 2014 Diederik P. Kingma
Jimmy Ba
1
+ Large Scale Adversarial Representation Learning 2019 Jeff Donahue
Karen Simonyan
1
+ Generative Modeling by Estimating Gradients of the Data Distribution 2019 Yang Song
Stefano Ermon
1
+ Generating Diverse High-Fidelity Images with VQ-VAE-2 2019 Ali Razavi
Aäron van den Oord
Oriol Vinyals
1
+ Glow: Generative Flow with Invertible 1x1 Convolutions 2018 Diederik P. Kingma
Prafulla Dhariwal
1
+ Class-Splitting Generative Adversarial Networks 2017 Guillermo L. Grinblat
Lucas C. Uzal
Pablo M. Granitto
1
+ Comparison of Maximum Likelihood and GAN-based training of Real NVPs 2017 Ivo Danihelka
Balaji Lakshminarayanan
Benigno Uría
Daan Wierstra
Peter Dayan
1
+ Progressive Growing of GANs for Improved Quality, Stability, and Variation 2017 Tero Karras
Timo Aila
Samuli Laine
Jaakko Lehtinen
1
+ Improved Training of Wasserstein GANs 2017 Ishaan Gulrajani
Faruk Ahmed
Martín Arjovsky
Vincent Dumoulin
Aaron Courville
1
+ GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium 2017 Martin Heusel
Hubert Ramsauer
Thomas Unterthiner
Bernhard Nessler
Sepp Hochreiter
1
+ Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks 2016 Tim Salimans
Diederik P. Kingma
1
+ Comparison of Maximum Likelihood and GAN-based training of Real NVPs. 2017 Ivo Danihelka
Balaji Lakshminarayanan
Benigno Uría
Daan Wierstra
Peter Dayan
1
+ Class-Splitting Generative Adversarial Networks. 2017 Guillermo L. Grinblat
Lucas C. Uzal
Pablo M. Granitto
1
+ A Note on the Inception Score 2018 Shane Barratt
Rishi Sharma
1
+ Spectral Normalization for Generative Adversarial Networks 2018 Takeru Miyato
Toshiki Kataoka
Masanori Koyama
Yuichi Yoshida
1
+ cGANs with Projection Discriminator 2018 Takeru Miyato
Masanori Koyama
1
+ Large Scale GAN Training for High Fidelity Natural Image Synthesis 2018 Andrew Brock
Jeff Donahue
Karen Simonyan
1
+ Generating Diverse High-Fidelity Images with VQ-VAE-2 2019 Ali Razavi
Aäron van den Oord
Oriol Vinyals
1
+ Generative Multi-Adversarial Networks 2016 Ishan Durugkar
Ian Gemp
Sridhar Mahadevan
1
+ Conditional Image Synthesis With Auxiliary Classifier GANs 2016 Augustus Odena
Christopher Olah
Jonathon Shlens
1
+ Large Scale GAN Training for High Fidelity Natural Image Synthesis 2018 Andrew Brock
Jeff Donahue
Karen Simonyan
1
+ Stabilizing Training of Generative Adversarial Networks through Regularization 2017 Kevin A. Roth
Aurélien Lucchi
Sebastian Nowozin
Thomas Hofmann
1
+ Large Scale Adversarial Representation Learning 2019 Jeff Donahue
Karen Simonyan
1
+ Generative Modeling by Estimating Gradients of the Data Distribution 2019 Yang Song
Stefano Ermon
1
+ Glow: Generative Flow with Invertible 1x1 Convolutions 2018 Diederik P. Kingma
Prafulla Dhariwal
1
+ Spectral Normalization for Generative Adversarial Networks 2018 Takeru Miyato
Toshiki Kataoka
Masanori Koyama
Yuichi Yoshida
1