Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Sign In
Light
Dark
System
Yuqian Lin
Follow
Share
Generating author description...
All published works
Action
Title
Year
Authors
+
On subsets of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:msubsup><mml:mrow><mml:mi mathvariant="double-struck">F</mml:mi></mml:mrow><mml:mrow><mml:mi>q</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msubsup></mml:math> containing no <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" display="inline" overflow="scroll"><mml:mi>k</mml:mi></mml:math>-term progressions
2010
Yuqian Lin
Jason B. Wolf
Common Coauthors
Coauthor
Papers Together
Jason B. Wolf
1
Commonly Cited References
Action
Title
Year
Authors
# of times referenced
+
PDF
Chat
On sets of integers containing k elements in arithmetic progression
1975
Endre Szemerédi
1
+
Roth’s Theorem
2009
R. Tijdeman
1
+
None
2003
Yves Edel
1
+
On sets of integers not containing long arithmetic progressions
2001
Izabella Łaba
Michael T. Lacey
1
+
Surveys in Combinatorics 2005
2005
B. S Webb
1
+
On Sets of Integers Which Contain No Three Terms in Arithmetical Progression
1946
Felix Behrend
1
+
On subsets of finite abelian groups with no 3-term arithmetic progressions
1995
Roy Meshulam
1
+
Roth’s theorem on progressions revisited
2008
Jean Bourgain
1
+
On Certain Sets of Integers
1953
K. F. Roth
1
+
XXIV.—Sets of Integers Containing not more than a Given Number of Terms in Arithmetical Progression
1961
R. A. Rankin
1
+
A New Proof of Szemer�di's Theorem for Arithmetic Progressions of Length Four
1998
W. T. Gowers
1
+
PDF
Chat
New bounds for Szemerédi's theorem, I: progressions of length 4 in finite field geometries
2008
Ben Green
Terence Tao
1
+
PDF
Chat
Roth’s theorem in ℤ<sub>4</sub><sup><i>n</i></sup>
2009
Tom Sanders
1