Kagan Tumer

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Safe Multiagent Coordination via Entropic Exploration 2024 Ayhan Alp Aydeniz
Enrico Marchesini
Robert Loftin
Christopher Amato
Kagan Tumer
+ Collaborative Evolutionary Reinforcement Learning 2019 Shauharda Khadka
Somdeb Majumdar
Tarek Nassar
Zach Dwiel
Evren Tumer
Santiago Miret
Yinyin Liu
Kagan Tumer
+ Evolutionary Reinforcement Learning for Sample-Efficient Multiagent Coordination 2019 Shauharda Khadka
Somdeb Majumdar
Santiago Miret
Stephen McAleer
Kagan Tumer
+ Collaborative Evolutionary Reinforcement Learning 2019 Shauharda Khadka
Somdeb Majumdar
Tarek Nassar
Zach Dwiel
Evren Tumer
Santiago Miret
Yinyin Liu
Kagan Tumer
+ Evolutionary Reinforcement Learning 2018 Shauharda Khadka
Kagan Tumer
+ Evolution-Guided Policy Gradient in Reinforcement Learning 2018 Shauharda Khadka
Kagan Tumer
+ PDF Chat Improving search algorithms by using intelligent coordinates 2004 David H. Wolpert
Kagan Tumer
Esfandiar Bandari
+ Collectives for the Optimal Combination of Imperfect Objects 2003 Kagan Tumer
David H. Wolpert
+ PDF Chat Classifier combining through trimmed means and order statistics 2002 Kagan Tumer
Joydeep Ghosh
+ PDF Chat Robust Combining of Disparate Classifiers through Order Statistics 2002 Kagan Tumer
Joydeep Ghosh
+ Robust Order Statistics Based Ensembles for Distributed Data Mining 2001 Kagan Tumer
Joydeep Ghosh
+ Adaptivity in agent-based routing for data networks 2000 David H. Wolpert
Sergery Kirshner
Chris J. Merz
Kagan Tumer
+ PDF Chat Collective intelligence for control of distributed dynamical systems 2000 David H. Wolpert
Kevin Wheeler
Kagan Tumer
+ General principles of learning-based multi-agent systems 1999 David H. Wolpert
Kevin Wheeler
Kagan Tumer
+ Avoiding Braess' Paradox through Collective Intelligence 1999 David H. Wolpert
Kagan Tumer
+ An Introduction to Collective Intelligence 1999 David H. Wolpert
Kagan Tumer
+ Robust Combining of Disparate Classifiers through Order Statistics 1999 Kagan Tumer
Joydeep Ghosh
+ Using Collective Intelligence to Route Internet Traffic 1999 David H. Wolpert
Kagan Tumer
Jeremy Frank
+ Adaptivity in Agent-Based Routing for Data Networks 1999 David H. Wolpert
Sergey Kirshner
Chris J. Merz
Kagan Tumer
+ General Principles of Learning-Based Multi-Agent Systems 1999 David H. Wolpert
Kevin Wheeler
Kagan Tumer
+ PDF Chat Ensembles of radial basis function networks for spectroscopic detection of cervical precancer 1998 Kagan Tumer
Nirmala Ramanujam
Joydeep Ghosh
Rebecca Richards‐Kortum
+ Classifier Combining through Trimmed Means and Order Statistics. 1998 Kagan Tumer
Joydeep Ghosh
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat A prototype model of stock exchange 1997 Guido Caldarelli
Matteo Marsili
Y.-C. Zhang
5
+ A first course in order statistics 1993 4
+ PDF Chat Estimation of Location and Scale Parameters by Order Statistics from Singly and Doubly Censored Samples 1956 A. E. Sarhan
Bernard Greenberg
4
+ Modeling Market Mechanism with Evolutionary Games 1998 Yicheng Zhang
3
+ General principles of learning-based multi-agent systems 1999 David H. Wolpert
Kevin Wheeler
Kagan Tumer
3
+ An Introduction to Collective Intelligence 1999 David H. Wolpert
Kagan Tumer
3
+ PDF Chat None 1996 Leo Breiman
3
+ Adaptive Competition, Market Efficiency, Phase Transitions and Spin-Glasses 1997 Robert Savit
Radu Manuca
Rick Riolo
3
+ PDF Chat Emergence of cooperation and organization in an evolutionary game 1997 Damien Challet
Yong Zhang
3
+ Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor 2018 Tuomas Haarnoja
Aurick Zhou
Pieter Abbeel
Sergey Levine
2
+ Continuous control with deep reinforcement learning 2015 Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
Nicolas Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
2
+ GEP-PG: Decoupling Exploration and Exploitation in Deep Reinforcement Learning Algorithms 2018 Cédric Colas
Olivier Sigaud
Pierre‐Yves Oudeyer
2
+ None 1997 Jerome H. Friedman
2
+ Proximal Policy Optimization Algorithms 2017 John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
2
+ Evolution Strategies as a Scalable Alternative to Reinforcement Learning 2017 Tim Salimans
Jonathan Ho
Xi Chen
Ilya Sutskever
2
+ Error-Correcting Output Coding Corrects Bias and Variance 1995 Eun Bae Kong
Thomas G. Dietterich
2
+ Using Collective Intelligence to Route Internet Traffic 1999 David H. Wolpert
Kagan Tumer
Jeremy Frank
2
+ PDF Chat Competition, efficiency and collective behavior in the “El Farol” bar model 1999 M. Cara
O. Plá
F. Guinea
2
+ Avoiding Braess' Paradox through Collective Intelligence 1999 David H. Wolpert
Kagan Tumer
2
+ Linear and Order Statistics Combiners for Pattern Classification 1999 Kagan Tumer
Joydeep Ghosh
Sonie Lau
2
+ Learning with ensembles: How overfitting can be useful 1995 Peter Sollich
Anders Krogh
2
+ Virtual path bandwidth allocation in multiuser networks 1997 Aurel A. Lazar
Ariel Orda
Dimitrios Pendarakis
2
+ Neural Network Classifiers Estimate Bayesian <i>a posteriori</i> Probabilities 1991 Michael D. Richard
Richard P. Lippmann
2
+ Asynchronous Methods for Deep Reinforcement Learning 2016 Volodymyr Mnih
Adrià Puigdomènech Badia
Mehdi Mirza
Alex Graves
Tim Harley
Timothy Lillicrap
David Silver
Koray Kavukcuoglu
2
+ PDF Chat Matrix Games, Mixed Strategies, and Statistical Mechanics 1998 Johannes Berg
Andreas Engel
2
+ PDF Chat On the minority game: Analytical and numerical studies 1998 Damien Challet
Yi‐Cheng Zhang
2
+ Reproducibility of Benchmarked Deep Reinforcement Learning Tasks for Continuous Control 2017 Riashat Islam
Peter Henderson
Maziar Gomrokchi
Doina Precup
2
+ PDF Chat Deep Reinforcement Learning That Matters 2018 Peter Henderson
Riashat Islam
Philip Bachman
Joëlle Pineau
Doina Precup
David Meger
2
+ Parameter Space Noise for Exploration 2017 Matthias Plappert
Rein Houthooft
Prafulla Dhariwal
Szymon Sidor
Richard Y. Chen
Xi Chen
Tamim Asfour
Pieter Abbeel
Marcin Andrychowicz
2
+ Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning 2017 Felipe Petroski Such
Vashisht Madhavan
Edoardo Conti
Joel Lehman
Kenneth O. Stanley
Jeff Clune
2
+ PDF Chat Phase Diagram of Traffic States in the Presence of Inhomogeneities 1999 Dirk Helbing
Ansgar Hennecke
Martin Treiber
1
+ Methods For Combining Experts' Probability Assessments 1995 Robert A. Jacobs
1
+ PDF Chat Dynamics of individual specialization and global diversification in communities 1998 Vivek S. Borkar
Sanjay Jain
Govindan Rangarajan
1
+ PDF Chat Mean-Field Solution of the Small-World Network Model 2000 Michelle G. Newman
Cristopher Moore
Duncan J. Watts
1
+ PDF Chat No free lunch theorems for optimization 1997 David H. Wolpert
William G. Macready
1
+ PDF Chat Ensembles of radial basis function networks for spectroscopic detection of cervical precancer 1998 Kagan Tumer
Nirmala Ramanujam
Joydeep Ghosh
Rebecca Richards‐Kortum
1
+ PDF Chat Exact results and scaling properties of small-world networks 2000 Rahul Kulkarni
Eivind Almaas
D. Stroud
1
+ Coherence and clustering in ensembles of neural networks 1997 Damián H. Zanette
Alexander S. Mikhailov
1
+ Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) 2015 Djork-Arné Clevert
Thomas Unterthiner
Sepp Hochreiter
1
+ Benchmarking Deep Reinforcement Learning for Continuous Control 2016 Yan Duan
Xi Chen
Rein Houthooft
John Schulman
Pieter Abbeel
1
+ Convolution by Evolution: Differentiable Pattern Producing Networks 2016 Chrisantha Fernando
Dylan Banarse
Malcolm Reynolds
Frederic Besse
David Pfau
Max Jaderberg
Marc Lanctot
Daan Wierstra
1
+ VIME: Variational Information Maximizing Exploration 2016 Rein Houthooft
Xi Chen
Yan Duan
John Schulman
Filip De Turck
Pieter Abbeel
1
+ Unifying Count-Based Exploration and Intrinsic Motivation 2016 Marc G. Bellemare
Sriram Srinivasan
Georg Ostrovski
Tom Schaul
David Saxton
Rémi Munos
1
+ Sample Efficient Actor-Critic with Experience Replay 2016 Ziyu Wang
Victor Bapst
Nicolas Heess
Volodymyr Mnih
Rémi Munos
Koray Kavukcuoglu
Nando de Freitas
1
+ PathNet: Evolution Channels Gradient Descent in Super Neural Networks 2017 Chrisantha Fernando
Dylan Banarse
Charles Blundell
Yori Zwólš
David Ha
Andrei A. Rusu
Alexander Pritzel
Daan Wierstra
1
+ Multi-step Off-policy Learning Without Importance Sampling Ratios 2017 Ashique Rupam Mahmood
Huizhen Yu
Richard S. Sutton
1
+ PDF Chat Multi-Step Reinforcement Learning: A Unifying Algorithm 2018 Kristopher De Asis
Juan Hernandez-Garcia
Gerhard Holland
Richard S. Sutton
1
+ Count-Based Exploration with Neural Density Models 2017 Georg Ostrovski
Marc G. Bellemare
Aäron van den Oord
Rémi Munos
1
+ Curiosity-driven Exploration by Self-supervised Prediction 2017 Deepak Pathak
Pulkit Agrawal
Alexei A. Efros
Trevor Darrell
1
+ Noisy Networks for Exploration 2017 Meire Fortunato
Mohammad Gheshlaghi Azar
Bilal Piot
Jacob Menick
Ian Osband
Alex Graves
Vlad Mnih
Rémi Munos
Demis Hassabis
Olivier Pietquin
1