Projects
Reading
People
Chat
SU\G
(đž)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Tom Boot
Follow
Share
Generating author description...
All published works
Action
Title
Year
Authors
+
PDF
Chat
Uniform inference in linear error-in-variables models: Divide-and-conquer
2024
Tom Boot
Artƫras Juodis
+
PDF
Chat
Inference on LATEs with covariates
2024
Tom Boot
Didier Nibbering
+
PDF
Chat
Unbiased estimation of the OLS covariance matrix when the errors are clustered
2023
Tom Boot
Gianmaria Niccodemi
Tom Wansbeek
+
Unbiased estimation of the OLS covariance matrix when the errors are clustered
2023
Tom Boot
Gianmaria Niccodemi
Tom Wansbeek
+
Joint inference based on Stein-type averaging estimators in the linear regression model
2023
Tom Boot
+
Uniform Inference in Linear Error-in-Variables Models: Divide-and-Conquer
2023
Tom Boot
Artƫras Juodis
+
Identification- and many instrument-robust inference via invariant moment conditions
2023
Tom Boot
Johannes W. Ligtenberg
+
Unbiased estimation of the OLS covariance matrix when the errors are clustered
2022
Tom Boot
Gianmaria Niccodemi
Tom Wansbeek
+
PDF
Chat
Wang and Leng (2016), High-Dimensional Ordinary Least-Squares Projection for Screening Variables, Journal of The Royal Statistical Society Series B, 78, 589â611
2021
Xiangyu Wang
Chenlei Leng
Tom Boot
+
PDF
Chat
Subspace Methods
2019
Tom Boot
Didier Nibbering
+
PDF
Chat
Forecasting using random subspace methods
2019
Tom Boot
Didier Nibbering
+
Confidence Regions for Averaging Estimators
2019
Tom Boot
+
Inference in high-dimensional linear regression models
2017
Tom Boot
Didier Nibbering
+
Confidence Intervals in High-Dimensional Regression Based on Regularized Pseudoinverses
2017
Tom Boot
Didier Nibbering
+
Scalable simultaneous inference in high-dimensional linear regression models.
2017
Tom Boot
Didier Nibbering
+
PDF
Chat
Confidence Intervals in High-Dimensional Regression Based on Regularized Pseudoinverses
2017
Tom Boot
Didier Nibbering
+
Inference in high-dimensional linear regression models
2017
Tom Boot
Didier Nibbering
+
Scalable simultaneous inference in high-dimensional linear regression models
2017
Tom Boot
Didier Nibbering
+
Forecasting using Random Subspace Methods
2016
Tom Boot
Didier Nibbering
+
PDF
Chat
Forecasting Using Random Subspace Methods
2016
Tom Boot
Didier Nibbering
Common Coauthors
Coauthor
Papers Together
Didier Nibbering
11
Gianmaria Niccodemi
3
Tom Wansbeek
3
Artƫras Juodis
2
Chenlei Leng
1
Johannes W. Ligtenberg
1
Xiangyu Wang
1
Commonly Cited References
Action
Title
Year
Authors
# of times referenced
+
Regression Shrinkage and Selection Via the Lasso
1996
Robert Tibshirani
6
+
PDF
Chat
Scaled sparse linear regression
2012
Tao Sun
C.-H. Zhang
3
+
Extensions of Lipschitz mappings into a Hilbert space
1984
William B. Johnson
Joram Lindenstrauss
3
+
Ridge Regression: Biased Estimation for Nonorthogonal Problems
1970
Arthur E. Hoerl
Robert W. Kennard
3
+
Compressed Least-Squares Regression
2009
Odalric Maillard
RĂ©mi Munos
3
+
Confidence intervals and hypothesis testing for high-dimensional regression
2014
Adel Javanmard
Andrea Montanari
3
+
PDF
Chat
Bayesian Compressed Regression
2014
Rajarshi Guhaniyogi
David B. Dunson
3
+
PDF
Chat
CUR matrix decompositions for improved data analysis
2009
Michael W. Mahoney
Petros Drineas
3
+
PDF
Chat
Confidence Intervals for Diffusion Index Forecasts and Inference for Factor-Augmented Regressions
2006
Jushan Bai
Serena Ng
3
+
PDF
Chat
Random Projections for Large-Scale Regression
2017
Gian-Andrea Thanei
Christina Heinze
Nicolai Meinshausen
3
+
PDF
Chat
A study of error variance estimation in Lasso regression
2015
Stephen Reid
Robert Tibshirani
Jerome H. Friedman
3
+
PDF
Chat
Sure Independence Screening for Ultrahigh Dimensional Feature Space
2008
Jianqing Fan
Jinchi Lv
3
+
PDF
Chat
Complete subset regressions
2013
Graham Elliott
Antonio Gargano
Allan Timmermann
3
+
Fast monte-carlo algorithms for finding low-rank approximations
2004
Alan Frieze
Ravi Kannan
Santosh Vempala
3
+
Complete subset regressions with large-dimensional sets of predictors
2015
Graham Elliott
Antonio Gargano
Allan Timmermann
3
+
LeaveâOut Estimation of Variance Components
2020
Patrick Kline
Raffaele Saggio
Mikkel SĂžlvsten
3
+
The matrix angular central Gaussian distribution
1990
Yasuko Chikuse
3
+
PDF
Chat
SamplingâBased versus DesignâBased Uncertainty in Regression Analysis
2020
Alberto Abadie
Susan Athey
Guido W. Imbens
Jeffrey M. Wooldridge
2
+
PDF
Chat
Asymptotic theory and wild bootstrap inference with clustered errors
2019
Antoine Djogbenou
James G. MacKinnon
Morten Ărregaard Nielsen
2
+
PDF
Chat
Introduction to the non-asymptotic analysis of random matrices
2012
Roman Vershynin
2
+
PDF
Chat
Estimating the error variance in a high-dimensional linear model
2019
Guo Yu
Jacob Bien
2
+
PDF
Chat
High Dimensional Ordinary Least Squares Projection for Screening Variables
2015
Xiangyu Wang
Chenlei Leng
2
+
PDF
Chat
Limit expressions for the risk of jamesâstein estimators
1982
George Casella
Jiunn Tzon Hwang
2
+
A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity
1980
Halbert White
2
+
PDF
Chat
Inference with Few Heterogeneous Clusters
2015
Rustam Ibragimov
Ulrich K. MĂŒller
2
+
The wild bootstrap for few (treated) clusters
2017
James G. MacKinnon
Matthew D. Webb
2
+
PDF
Chat
Robust Standard Errors in Small Samples: Some Practical Advice
2016
Guido W. Imbens
Michal KolesĂĄr
2
+
PDF
Chat
Asymptotic theory for clustered samples
2019
Bruce E. Hansen
Seojeong Lee
2
+
PDF
Chat
Debiasing the lasso: Optimal sample size for Gaussian designs
2018
Adel Javanmard
Andrea Montanari
2
+
PDF
Chat
Gene hunting with hidden Markov model knockoffs
2018
Matteo Sesia
Chiara Sabatti
Emmanuel J. CandĂšs
2
+
High-Dimensional Probability: An Introduction with Applications in Data Science
2018
Roman Vershynin
2
+
PDF
Chat
How Much Should We Trust Differences-In-Differences Estimates?
2004
Bertrand Moine
Esther Duflo
Sendhil Mullainathan
2
+
PDF
Chat
Efficient shrinkage in parametric models
2015
Bruce E. Hansen
2
+
Inference with Difference-in-Differences and Other Panel Data
2007
Stephen G. Donald
Kevin Lang
2
+
PDF
Chat
Frequentist Model Average Estimators
2003
Nils Lid Hjort
Gerda Claeskens
2
+
Longitudinal data analysis using generalized linear models
1986
KungâYee Liang
Scott L. Zeger
2
+
PDF
Chat
Variable Selection in Predictive Regressions
2013
Serena Ng
2
+
The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics
1980
Trevor Breusch
A. R. Pagan
2
+
PDF
Chat
Revisiting useful approaches to data-rich macroeconomic forecasting
2016
Jan J. J. Groen
George Kapetanios
2
+
PDF
Chat
Least angle regression
2004
Bradley Efron
Trevor Hastie
Iain M. Johnstone
Robert Tibshirani
2
+
PDF
Chat
Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties
1985
James G. MacKinnon
Halbert White
2
+
Valid post-selection and post-regularization inference: An elementary, general approach
2016
Victor Chernozhukov
Martin Spindler
Christian Hansen
2
+
PDF
Chat
Strong converse for identification via quantum channels
2002
Rudolf Ahlswede
Andreas Winter
2
+
PDF
Chat
Model Selection and Model Averaging
2009
Cedric E. Ginestet
2
+
PDF
Chat
Least Squares Model Averaging
2007
Bruce E. Hansen
2
+
Averaging estimators for autoregressions with a near unit root
2010
Bruce E. Hansen
2
+
PDF
Chat
Jackknife model averaging
2011
Bruce E. Hansen
Jeffrey S. Racine
2
+
PDF
Chat
Estimation of the Mean of a Multivariate Normal Distribution
1981
Charles Stein
2
+
A Statistical Perspective on Algorithmic Leveraging
2014
Ping Ma
Michael W. Mahoney
Bin Yu
2
+
PDF
Chat
A Practitionerâs Guide to Cluster-Robust Inference
2015
A. Colin Cameron
Douglas L. Miller
2