Ken Nakae

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat The NanoZoomer Connectomics Pipeline for Tracer Injection Studies of the Marmoset Brain 2019 Alexander Woodward
Rui Gong
Hiroshi Abe
Ken Nakae
Junichi Hata
Henrik Skibbe
Yoko Yamaguchi
Shin Ishii
Hideyuki Okano
Tetsuo Yamamori
+ MarmoNet: a pipeline for automated projection mapping of the common marmoset brain from whole-brain serial two-photon tomography 2019 Henrik Skibbe
Akiya Watakabe
Ken Nakae
Carlos Enrique Gutierrez
Hiromichi Tsukada
Junichi Hata
Takashi Kawase
Rui Gong
Alexander Woodward
Kenji Doya
+ Optimization and Validation of Diffusion MRI-based Fiber Tracking with Neural Tracer Data as a Reference 2019 Carlos Enrique Gutierrez
Henrik Skibbe
Ken Nakae
Hiromichi Tsukada
Jean Liénard
Akiya Watakabe
Junichi Hata
Marco Reisert
Alexander Woodward
Hideyuki Okano
+ Distributional Smoothing with Virtual Adversarial Training 2016 Takeru Miyato
Shin‐ichi Maeda
Masanori Koyama
Ken Nakae
Shin Ishii
+ Distributional Smoothing by Virtual Adversarial Examples 2015 Takeru Miyato
Shin‐ichi Maeda
Masanori Koyama
Ken Nakae
Shin Ishii
+ Deep learning of fMRI big data: a novel approach to subject-transfer decoding 2015 Sotetsu Koyamada
Yumi Shikauchi
Ken Nakae
Masanori Koyama
Shin Ishii
+ PDF Chat Principal Sensitivity Analysis 2015 Sotetsu Koyamada
Masanori Koyama
Ken Nakae
Shin Ishii
+ Distributional Smoothing with Virtual Adversarial Training 2015 Takeru Miyato
Shin‐ichi Maeda
Masanori Koyama
Ken Nakae
Shin Ishii
+ PDF Chat Microscopic image restoration based on tensor factorization of rotated patches 2012 Masayuki Kouno
Ken Nakae
Shigeyuki Oba
Shin Ishii
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift 2015 Sergey Ioffe
Christian Szegedy
3
+ MarmoNet: a pipeline for automated projection mapping of the common marmoset brain from whole-brain serial two-photon tomography 2019 Henrik Skibbe
Akiya Watakabe
Ken Nakae
Carlos Enrique Gutierrez
Hiromichi Tsukada
Junichi Hata
Takashi Kawase
Rui Gong
Alexander Woodward
Kenji Doya
2
+ Improving neural networks by preventing co-adaptation of feature detectors 2012 Geoffrey E. Hinton
Nitish Srivastava
Alex Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
2
+ Towards Deep Neural Network Architectures Robust to Adversarial Examples 2014 Shixiang Gu
Luca Rigazio
1
+ PDF Chat Higher Order Orthogonal Iteration of Tensors (HOOI) and its Relation to PCA and GLRAM 2007 Bernard N. Sheehan
Yousef Saad
1
+ Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition 1970 J. Douglas Carroll
Jih-Jie Chang
1
+ PDF Chat A Multilinear Singular Value Decomposition 2000 Lieven De Lathauwer
Bart De Moor
Joos Vandewalle
1
+ Multiple Comparisons Using Rank Sums 1964 Olive Jean Dunn
1
+ On the Best Rank-1 and Rank-(<i>R</i><sub>1</sub> ,<i>R</i><sub>2</sub> ,. . .,<i>R<sub>N</sub></i>) Approximation of Higher-Order Tensors 2000 Lieven De Lathauwer
Bart De Moor
Joos Vandewalle
1
+ Algorithm 862 2006 Brett W. Bader
Tamara G. Kolda
1
+ Use of Ranks in One-Criterion Variance Analysis 1952 William Kruskal
W. Allen Wallis
1
+ Information Theory and an Extension of the Maximum Likelihood Principle 1998 H. Akaike
1
+ Scikit-learn: Machine Learning in Python 2012 FabiĂĄn Pedregosa
Gaël Varoquaux
Alexandre Gramfort
Vincent Michel
Bertrand Thirion
Olivier Grisel
Mathieu Blondel
Peter Prettenhofer
Ron J. Weiss
Vincent Dubourg
1
+ Nonnegative Tucker Decomposition 2007 Yong‐Deok Kim
Seungjin Choi
1
+ Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis 1970 Richard A. Harshman
1
+ PDF Chat Eigenvalue computation in the 20th century 2000 Gene H. Golub
H.A. van der Vorst
1
+ Learning with Pseudo-Ensembles 2014 Phil Bachman
Ouais Alsharif
Doina Precup
1
+ Spline Models for Observational Data. 1991 Hans‐Georg MĂŒller
Grace Wahba
1
+ How to Explain Individual Classification Decisions 2009 David Baehrens
Timon Schroeter
Stefan Harmeling
Motoaki Kawanabe
Katja Hansen
Klaus‐Robert MĂŒller
1
+ PDF Chat Machine learning for neuroimaging with scikit-learn 2014 Alexandre Abraham
Fabian Pedregosa
Michael Eickenberg
Philippe Gervais
Andreas Mueller
Jean Kossaifi
Alexandre Gramfort
Bertrand Thirion
Gaël Varoquaux
1
+ TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems 2016 Martı́n Abadi
Ashish Agarwal
Paul Barham
Eugene Brevdo
Zhifeng Chen
Craig Citro
Gregory S. Corrado
Andy Davis
Jay B. Dean
Matthieu Devin
1
+ PDF Chat The CMA Evolution Strategy: A Tutorial 2005 Nikolaus Hansen
1
+ MATLAB Tensor Toolbox 2006 Tamara G. Kolda
Brett W. Bader
1
+ Semi-Supervised Learning with Deep Generative Models 2014 Diederik P. Kingma
Danilo Jimenez Rezende
Shakir Mohamed
Max Welling
1
+ PDF Chat Gibbs‐ringing artifact removal based on local subvoxel‐shifts 2015 Elias Kellner
Bibek Dhital
Valerij G. Kiselev
Marco Reisert
1
+ Adam: A Method for Stochastic Optimization 2014 Diederik P. Kingma
Jimmy Ba
1
+ PDF Chat Shot noise in mesoscopic conductors 2000 Ya. M. Blanter
Μ. BĂŒttiker
1
+ Structured Sparse Principal Component Analysis 2009 Rodolphe Jenatton
Guillaume Obozinski
Francis Bach
1
+ Noisy matrix decomposition via convex relaxation: Optimal rates in high dimensions 2012 Alekh Agarwal
Sahand Negahban
Martin J. Wainwright
1
+ Theano: new features and speed improvements 2012 Frédéric Bastien
Pascal Lamblin
Razvan Pascanu
James Bergstra
Ian J. Goodfellow
Arnaud Bergeron
Nicolas Bouchard
David Warde-Farley
Yoshua Bengio
1
+ Lateral Connections in Denoising Autoencoders Support Supervised Learning. 2015 Antti Rasmus
Harri Valpola
Tapani Raiko
1