Ahmed Attia

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Robust optimal design of large-scale Bayesian nonlinear inverse problems 2024 Abhijit Chowdhary
Ahmed Attia
Alen Alexanderian
+ PDF Chat Heuristic algorithms for placing geomagnetically induced current blocking devices 2024 Minseok Ryu
Ahmed Attia
Arthur K. Barnes
Russell Bent
Sven Leyffer
Ádåm Måté
+ PDF Chat Probabilistic Approach to Black-Box Binary Optimization with Budget Constraints: Application to Sensor Placement 2024 Ahmed Attia
+ PDF Chat PyOED: An Extensible Suite for Data Assimilation and Model-Constrained Optimal Design of Experiments 2024 Abhijit Chowdhary
Shady E. Ahmed
Ahmed Attia
+ Robust A-Optimal Experimental Design for Bayesian Inverse Problems 2023 Ahmed Attia
Sven Leyffer
Todd Munson
+ Heuristic Algorithms for Placing Geomagnetically Induced Current Blocking Devices 2023 Minseok Ryu
Ahmed Attia
Arthur K. Barnes
Russell Bent
Sven Leyffer
Ádåm Måté
+ Centralized calibration of power system dynamic models using variational data assimilation 2023 Ahmed Attia
Daniel Adrian Maldonado
Emil M. Constantinescu
Mihai Anitescu
+ PDF Chat Optimal Experimental Design for Inverse Problems in the Presence of Observation Correlations 2022 Ahmed Attia
Emil M. Constantinescu
+ PDF Chat Stochastic Learning Approach for Binary Optimization: Application to Bayesian Optimal Design of Experiments 2022 Ahmed Attia
Sven Leyffer
Todd Munson
+ Stochastic Learning Approach to Binary Optimization for Optimal Design of Experiments. 2021 Ahmed Attia
Sven Leyffer
Todd Munson
+ PDF Chat DATeS: a highly extensible data assimilation testing suite v1.0 2019 Ahmed Attia
Adrian Sandu
+ Goal-oriented optimal design of experiments for large-scale Bayesian linear inverse problems 2018 Ahmed Attia
Alen Alexanderian
Arvind K. Saibaba
+ PDF Chat Cluster Sampling Filters for Non-Gaussian Data Assimilation 2018 Ahmed Attia
Azam Moosavi
Adrian Sandu
+ A Machine Learning Approach to Adaptive Covariance Localization 2018 Azam Moosavi
Ahmed Attia
Adrian Sandu
+ An Optimal Experimental Design Framework for Adaptive Inflation and Covariance Localization for Ensemble Filters 2018 Ahmed Attia
Emil M. Constantinescu
+ Cluster Sampling Filters for Non-Gaussian Data Assimilation 2016 Ahmed Attia
Azam Moosavi
Adrian Sandu
+ PDF Chat A Hybrid Monte‐Carlo sampling smoother for four‐dimensional data assimilation 2016 Ahmed Attia
Vishwas Rao
Adrian Sandu
+ PDF Chat The reduced‐order hybrid Monte Carlo sampling smoother 2016 Ahmed Attia
Răzvan ƞtefănescu
Adrian Sandu
+ A Hybrid Monte-Carlo Sampling Smoother for Four Dimensional Data Assimilation 2015 Ahmed Attia
Vishwas Rao
Adrian Sandu
+ A Sampling Filter for Non-Gaussian Data Assimilation 2014 Ahmed Attia
Adrian Sandu
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat The reduced‐order hybrid Monte Carlo sampling smoother 2016 Ahmed Attia
Răzvan ƞtefănescu
Adrian Sandu
8
+ PDF Chat A Hybrid Monte‐Carlo sampling smoother for four‐dimensional data assimilation 2016 Ahmed Attia
Vishwas Rao
Adrian Sandu
7
+ PDF Chat A Fast and Scalable Method for A-Optimal Design of Experiments for Infinite-dimensional Bayesian Nonlinear Inverse Problems 2016 Alen Alexanderian
Noémi Petra
Georg Stadler
Omar Ghattas
6
+ Numerical methods for experimental design of large-scale linear ill-posed inverse problems 2008 Eldad Haber
Lior Horesh
Luis Tenorio
6
+ Numerical methods for A-optimal designs with a sparsity constraint for ill-posed inverse problems 2011 Eldad Haber
Zhuojun Magnant
Christian Lucero
Luis Tenorio
5
+ PDF Chat Efficient D-Optimal Design of Experiments for Infinite-Dimensional Bayesian Linear Inverse Problems 2018 Alen Alexanderian
Arvind K. Saibaba
5
+ PDF Chat Simulation-based optimal Bayesian experimental design for nonlinear systems 2012 Xun Huan
Youssef Marzouk
5
+ Model Variational Inverse Problems Governed by Partial Differential Equations 2011 Noei Petra
Georg Stadler
5
+ PDF Chat A-Optimal Design of Experiments for Infinite-Dimensional Bayesian Linear Inverse Problems with Regularized $\ell_0$-Sparsification 2014 Alen Alexanderian
Noémi Petra
Georg Stadler
Omar Ghattas
5
+ Numerical methods for the design of large-scale nonlinear discrete ill-posed inverse problems 2009 Eldad Haber
Lior Horesh
Luis Tenorio
5
+ PDF Chat A Computational Framework for Infinite-Dimensional Bayesian Inverse Problems Part I: The Linearized Case, with Application to Global Seismic Inversion 2013 Tan Bui‐Thanh
Omar Ghattas
James L. Martin
Georg Stadler
4
+ PDF Chat DATeS: a highly extensible data assimilation testing suite v1.0 2019 Ahmed Attia
Adrian Sandu
4
+ Goal-oriented optimal design of experiments for large-scale Bayesian linear inverse problems 2018 Ahmed Attia
Alen Alexanderian
Arvind K. Saibaba
4
+ PDF Chat Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix 2011 Haim Avron
Sivan Toledo
4
+ PDF Chat Randomized matrix-free trace and log-determinant estimators 2017 Arvind K. Saibaba
Alen Alexanderian
Ilse C. F. Ipsen
4
+ Probabilistic Inference Using Markov Chain Monte Carlo Methods 2011 Radford M. Neal
3
+ PDF Chat MCMC Using Hamiltonian Dynamics 2011 Radford M. Neal
3
+ Numerical Hamiltonian Problems 1994 J. M. Sanz‐Serna
M. P. Calvo
3
+ PDF Chat A Comparison of Two Shallow-Water Models with Nonconforming Adaptive Grids 2008 Amik St-Cyr
Christiane Jablonowski
John M. Dennis
Henry M. Tufo
Stephen Thomas
3
+ Optimal tuning of the hybrid Monte Carlo algorithm 2013 Alexandros Beskos
Natesh S. Pillai
Gareth O. Roberts
J. M. Sanz‐Serna
Andrew M. Stuart
3
+ Hybrid Monte Carlo on Hilbert spaces 2011 Alexandros Beskos
F. J. Pinski
J. M. Sanz‐Serna
Andrew M. Stuart
3
+ PDF Chat Evaluating Data Assimilation Algorithms 2012 Kody J. H. Law
Andrew M. Stuart
3
+ PDF Chat Riemann Manifold Langevin and Hamiltonian Monte Carlo Methods 2011 Mark Girolami
Ben Calderhead
3
+ PDF Chat Stochastic Learning Approach for Binary Optimization: Application to Bayesian Optimal Design of Experiments 2022 Ahmed Attia
Sven Leyffer
Todd Munson
3
+ PDF Chat Optimal experimental design under irreducible uncertainty for linear inverse problems governed by PDEs 2020 Karina Koval
Alen Alexanderian
Georg Stadler
3
+ PDF Chat GRADIENT-BASED STOCHASTIC OPTIMIZATION METHODS IN BAYESIAN EXPERIMENTAL DESIGN 2014 Xun Huan
Youssef Marzouk
3
+ On Bayesian A- and D-Optimal Experimental Designs in Infinite Dimensions 2015 Alen Alexanderian
Philip Gloor
Omar Ghattas
3
+ Markov Chain Monte Carlo and Numerical Differential Equations 2013 J. M. Sanz‐Serna
3
+ PDF Chat Numerical Integrators for the Hybrid Monte Carlo Method 2014 Sergio Blanes
Fernando Casas
J. M. Sanz‐Serna
3
+ PDF Chat Minimizing finite sums with the stochastic average gradient 2016 Mark Schmidt
Nicolas Le Roux
Francis Bach
2
+ PDF Chat Nonlinear Goal-Oriented Bayesian Inference: Application to Carbon Capture and Storage 2014 Chad Lieberman
Karen Willcox
2
+ Robust Stochastic Approximation Approach to Stochastic Programming 2009 Arkadi Nemirovski
Anatoli Juditsky
Guanghui Lan
Alexander Shapiro
2
+ PDF Chat Fast Bayesian experimental design: Laplace-based importance sampling for the expected information gain 2018 Joakim Beck
Ben Mansour Dia
Luis Espath
Quan Long
RaĂșl Tempone
2
+ PDF Chat Cluster Sampling Filters for Non-Gaussian Data Assimilation 2018 Ahmed Attia
Azam Moosavi
Adrian Sandu
2
+ PDF Chat Scalable and efficient algorithms for the propagation of uncertainty from data through inference to prediction for large-scale problems, with application to flow of the Antarctic ice sheet 2015 Tobin Isaac
Noémi Petra
Georg Stadler
Omar Ghattas
2
+ Fast Incremental Method for Nonconvex Optimization 2016 Sashank J. Reddi
Suvrit Sra
BarnabĂĄs PĂłczos
Alexander J. Smola
2
+ PDF Chat A-optimal encoding weights for nonlinear inverse problems, with application to the Helmholtz inverse problem 2017 Benjamin Crestel
Alen Alexanderian
Georg Stadler
Omar Ghattas
2
+ Asymptotic Theory for Solutions in Statistical Estimation and Stochastic Programming 1993 Alan J. King
R. T. Rockafellar
2
+ PDF Chat Inverse problems: A Bayesian perspective 2010 Andrew M. Stuart
2
+ PDF Chat A local ensemble Kalman filter for atmospheric data assimilation 2004 Edward Ott
Brian R. Hunt
Istvan Szunyogh
Aleksey V. Zimin
Eric J. Kostelich
M. Corazza
Eugenia Kalnay
D. J. Patil
James A. Yorke
2
+ Asymptotic analysis of stochastic programs 1991 Alexander Shapiro
2
+ Efficiency improvement and variance reduction 1994 Pierre L’Ecuyer
2
+ PDF Chat Fast ensemble smoothing 2007 Sai Ravela
Dennis McLaughlin
2
+ Replica Monte Carlo Simulation of Spin-Glasses 1986 Robert H. Swendsen
Jian‐Sheng Wang
2
+ A computational framework for infinite-dimensional Bayesian inverse problems. Part I: The linearized case, with application to global seismic inversion 2013 Tan Bui‐Thanh
Omar Ghattas
James L. Martin
Georg Stadler
2
+ PDF Chat Asymptotic Behavior of Statistical Estimators and of Optimal Solutions of Stochastic Optimization Problems 1988 Jitka Dupačová
Roger J.‐B. Wets
2
+ A derivative-free trust region framework for variational data assimilation 2015 Elías D. Niño-Ruiz
Adrian Sandu
2
+ Accelerated Monte Carlo for Optimal Estimation of Time Series 2005 Francis J. Alexander
Gregory L. Eyink
Juan M. Restrepo
2
+ PDF Chat An optimization framework to improve 4D-Var data assimilation system performance 2014 Alexandru Cioaca
Adrian Sandu
2
+ An alternating direction implicit method for solving the shallow water equations 1971 Bertil Gustafsson
2