Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Andrey Malinin
Follow
Share
Generating author description...
All published works
Action
Title
Year
Authors
+
PDF
Chat
Tackling Bias in the Dice Similarity Coefficient: Introducing NDSC for White Matter Lesion Segmentation
2023
Vatsal Raina
Nataliia Molchanova
Mara Graziani
Andrey Malinin
Henning Müller
Meritxell Bach Cuadra
Mark Gales
+
Tackling Bias in the Dice Similarity Coefficient: Introducing nDSC for White Matter Lesion Segmentation
2023
Vatsal Raina
Nataliia Molchanova
Mara Graziani
Andrey Malinin
Henning Müller
Meritxell Bach Cuadra
Mark Gales
+
Evaluating Robustness and Uncertainty of Graph Models Under Structural Distributional Shifts
2023
Gleb Bazhenov
Denis Kuznedelev
Andrey Malinin
Artem Babenko
Liudmila Prokhorenkova
+
Structural-Based Uncertainty in Deep Learning Across Anatomical Scales: Analysis in White Matter Lesion Segmentation
2023
Nataliia Molchanova
Vatsal Raina
Andrey Malinin
Francesco La Rosa
Adrien Depeursinge
Mark Gales
Cristina Granziera
Henning Müller
Mara Graziani
Meritxell Bach Cuadra
+
Shifts Marine Cargo Vessel Power Consumption Prediction Dataset
2022
Andrey Malinin
Ανδρέας Αθανασόπουλος
Muhamed Baraković
Meritxell Bach Cuadra
Mark Gales
Cristina Granziera
Mara Graziani
Nikolay Kartashev
Konstantinos G. Kyriakopoulos
Po‐Jui Lu
+
Shifts Marine Cargo Vessel Power Consumption Prediction Dataset
2022
Andrey Malinin
Ανδρέας Αθανασόπουλος
Muhamed Baraković
Meritxell Bach Cuadra
Mark Gales
Cristina Granziera
Mara Graziani
Nikolay Kartashev
Konstantinos G. Kyriakopoulos
Po‐Jui Lu
+
Shifts Marine Cargo Vessel Power Consumption Prediction Dataset
2022
Andrey Malinin
Ανδρέας Αθανασόπουλος
Muhamed Baraković
Meritxell Bach Cuadra
Mark Gales
Cristina Granziera
Mara Graziani
Nikolay Kartashev
Konstantinos G. Kyriakopoulos
Po‐Jui Lu
+
Shifts Multiple Sclerosis Lesion Segmentation Dataset Part 1
2022
Andrey Malinin
Ανδρέας Αθανασόπουλος
Muhamed Baraković
Meritxell Bach Cuadra
Mark Gales
Cristina Granziera
Mara Graziani
Nikolay Kartashev
Konstantinos G. Kyriakopoulos
Po‐Jui Lu
+
Shifts Multiple Sclerosis Lesion Segmentation Dataset Part 2
2022
Andrey Malinin
Ανδρέας Αθανασόπουλος
Muhamed Baraković
Meritxell Bach Cuadra
Mark Gales
Cristina Granziera
Mara Graziani
Nikolay Kartashev
Konstantinos G. Kyriakopoulos
Po‐Jui Lu
+
Shifts Multiple Sclerosis Lesion Segmentation Dataset Part 2
2022
Andrey Malinin
Ανδρέας Αθανασόπουλος
Muhamed Baraković
Meritxell Bach Cuadra
Mark Gales
Cristina Granziera
Mara Graziani
Nikolay Kartashev
Konstantinos G. Kyriakopoulos
Po‐Jui Lu
+
Shifts Multiple Sclerosis Lesion Segmentation Dataset Part 1
2022
Andrey Malinin
Ανδρέας Αθανασόπουλος
Muhamed Baraković
Meritxell Bach Cuadra
Mark Gales
Cristina Granziera
Mara Graziani
Nikolay Kartashev
Konstantinos G. Kyriakopoulos
Po‐Jui Lu
+
Shifts 2.0: Extending The Dataset of Real Distributional Shifts
2022
Andrey Malinin
Ανδρέας Αθανασόπουλος
Muhamed Baraković
Meritxell Bach Cuadra
Mark Gales
Cristina Granziera
Mara Graziani
Nikolay Kartashev
Konstantinos G. Kyriakopoulos
Po‐Jui Lu
+
Novel structural-scale uncertainty measures and error retention curves: application to multiple sclerosis
2022
Nataliia Molchanova
Vatsal Raina
Andrey Malinin
Francesco La Rosa
Henning Müller
Mark Gales
Cristina Granziera
Mara Graziani
Meritxell Bach Cuadra
+
Scaling Ensemble Distribution Distillation to Many Classes with Proxy Targets
2021
Max Ryabinin
Andrey Malinin
Mark Gales
+
Shifts: A Dataset of Real Distributional Shift Across Multiple Large-Scale Tasks
2021
Andrey Malinin
Neil Band
Ganshin
Alexander -
German Chesnokov
Yarin Gal
Mark Gales
Alexey Noskov
Andrey Ploskonosov
Liudmila Prokhorenkova
+
On the Periodic Behavior of Neural Network Training with Batch Normalization and Weight Decay
2021
Ekaterina Lobacheva
Maxim Kodryan
Nadezhda Chirkova
Andrey Malinin
Dmitry Vetrov
+
PDF
Chat
Ensemble Distillation Approaches for Grammatical Error Correction
2021
Yassir Fathullah
Mark Gales
Andrey Malinin
+
Scaling Ensemble Distribution Distillation to Many Classes with Proxy Targets
2021
Max Ryabinin
Andrey Malinin
Mark Gales
+
PDF
Chat
Uncertainty Measures in Neural Belief Tracking and the Effects on Dialogue Policy Performance
2021
Carel van Niekerk
Andrey Malinin
Christian Geishauser
Michael Heck
Hsien-chin Lin
Nurul Lubis
Shutong Feng
Milica Gašić
+
PDF
Chat
Multi-Sentence Resampling: A Simple Approach to Alleviate Dataset Length Bias and Beam-Search Degradation
2021
Ivan Provilkov
Andrey Malinin
+
Multi-Sentence Resampling: A Simple Approach to Alleviate Dataset Length Bias and Beam-Search Degradation
2021
Ivan Provilkov
Andrey Malinin
+
Uncertainty Measures in Neural Belief Tracking and the Effects on Dialogue Policy Performance
2021
Carel van Niekerk
Andrey Malinin
Christian Geishauser
Michael Heck
Hsien-chin Lin
Nurul Lubis
Shutong Feng
Milica Gašić
+
Shifts: A Dataset of Real Distributional Shift Across Multiple Large-Scale Tasks
2021
Andrey Malinin
Neil Band
Ganshin
Alexander -
German Chesnokov
Yarin Gal
Mark Gales
Alexey Noskov
Andrey Ploskonosov
Liudmila Prokhorenkova
+
On the Periodic Behavior of Neural Network Training with Batch Normalization and Weight Decay
2021
Ekaterina Lobacheva
Maxim Kodryan
Nadezhda Chirkova
Andrey Malinin
Dmitry Vetrov
+
Ensemble Distillation Approaches for Grammatical Error Correction.
2020
Yassir Fathullah
Mark Gales
Andrey Malinin
+
Ensemble Distribution Distillation
2020
Andrey Malinin
Bruno Mlodozeniec
Mark Gales
+
Uncertainty in Structured Prediction.
2020
Andrey Malinin
Mark Gales
+
Uncertainty in Gradient Boosting via Ensembles
2020
Aleksei Ustimenko
Liudmila Prokhorenkova
Andrey Malinin
+
Regression Prior Networks
2020
Andrey Malinin
Sergey Chervontsev
Ivan Provilkov
Mark Gales
+
Uncertainty Estimation in Autoregressive Structured Prediction
2020
Andrey Malinin
Mark Gales
+
Ensemble Distillation Approaches for Grammatical Error Correction
2020
Yassir Fathullah
Mark Gales
Andrey Malinin
+
Reverse KL-Divergence Training of Prior Networks: Improved Uncertainty and Adversarial Robustness
2019
Andrey Malinin
Mark Gales
+
Ensemble Distribution Distillation
2019
Andrey Malinin
Bruno Mlodozeniec
Mark Gales
+
Reverse KL-Divergence Training of Prior Networks: Improved Uncertainty and Adversarial Robustness
2019
Andrey Malinin
Mark Gales
+
Prior Networks for Detection of Adversarial Attacks
2018
Andrey Malinin
Mark Gales
+
Predictive Uncertainty Estimation via Prior Networks
2018
Andrey Malinin
Mark Gales
+
Prior Networks for Detection of Adversarial Attacks
2018
Andrey Malinin
Mark Gales
Common Coauthors
Coauthor
Papers Together
Mark Gales
29
Vatsal Raina
14
Meritxell Bach Cuadra
12
Mara Graziani
12
Nataliia Molchanova
12
Cristina Granziera
10
Francesco La Rosa
10
Muhamed Baraković
8
Nikolay Kartashev
8
Po‐Jui Lu
8
Efi Tsompopoulou
8
Elena Volf
8
Eli Sivena
8
Ανδρέας Αθανασόπουλος
8
Vasileios Tsarsitalidis
8
Konstantinos G. Kyriakopoulos
8
Antonis Nikitakis
8
Ivan Provilkov
5
Liudmila Prokhorenkova
4
Henning Müller
4
Yassir Fathullah
3
Carel van Niekerk
2
Mariya Shmatova
2
Ganshin
2
Michael Heck
2
Roginskiy
2
Vyas Raina
2
Panos Tigas
2
Yarin Gal
2
Neil Band
2
Shutong Feng
2
Nurul Lubis
2
German Chesnokov
2
Nadezhda Chirkova
2
Alexey Noskov
2
Milica Gašić
2
Bruno Mlodozeniec
2
Denis Denis
2
Christian Geishauser
2
Boris Yangel
2
Max Ryabinin
2
Hsien-chin Lin
2
Alexander -
2
Ekaterina Lobacheva
2
Dmitry Vetrov
1
Maxim Kodryan
1
Gleb Bazhenov
1
Sergey Chervontsev
1
Adrien Depeursinge
1
Denis Kuznedelev
1
Commonly Cited References
Action
Title
Year
Authors
# of times referenced
+
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
2016
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
11
+
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
2015
Yarin Gal
Zoubin Ghahramani
11
+
Can you trust your model's uncertainty? Evaluating predictive uncertainty under dataset shift
2019
Yaniv Ovadia
Emily Fertig
Jie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
9
+
Ensemble Distribution Distillation
2020
Andrey Malinin
Bruno Mlodozeniec
Mark Gales
8
+
Distilling the Knowledge in a Neural Network
2015
Geoffrey E. Hinton
Oriol Vinyals
Jay B. Dean
8
+
Very Deep Convolutional Networks for Large-Scale Image Recognition
2014
Karen Simonyan
Andrew Zisserman
8
+
Efficient Estimation of Word Representations in Vector Space
2013
Tomáš Mikolov
Kai Chen
Greg S. Corrado
Jay B. Dean
8
+
Concrete Problems in AI Safety
2016
Dario Amodei
Chris Olah
Jacob Steinhardt
Paul F. Christiano
John Schulman
Dan Mané
6
+
Reverse KL-Divergence Training of Prior Networks: Improved Uncertainty and Adversarial Robustness
2019
Andrey Malinin
Mark Gales
5
+
Decomposition of Uncertainty for Active Learning and Reliable Reinforcement Learning in Stochastic Systems.
2017
Stefan Depeweg
José Miguel Hernández-Lobato
Finale Doshi‐Velez
Steffen Udluft
5
+
A Simple Baseline for Bayesian Uncertainty in Deep Learning
2019
Wesley J. Maddox
Timur Garipov
Pavel Izmailov
Dmitry Vetrov
Andrew Gordon Wilson
5
+
BatchBALD: Efficient and Diverse Batch Acquisition for Deep Bayesian Active Learning
2019
Andreas Kirsch
Joost van Amersfoort
Yarin Gal
5
+
Attention is All you Need
2017
Ashish Vaswani
Noam Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan N. Gomez
Łukasz Kaiser
Illia Polosukhin
5
+
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
2016
Dan Hendrycks
Kevin Gimpel
4
+
Neural Machine Translation by Jointly Learning to Align and Translate
2015
Dzmitry Bahdanau
Kyunghyun Cho
Yoshua Bengio
4
+
Adam: A Method for Stochastic Optimization
2014
Diederik P. Kingma
Jimmy Ba
4
+
PDF
Chat
Neural Machine Translation of Rare Words with Subword Units
2016
Rico Sennrich
Barry Haddow
Alexandra Birch
4
+
PDF
Chat
Deep Residual Learning for Image Recognition
2016
Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
4
+
Deep Speech: Scaling up end-to-end speech recognition
2014
Awni Hannun
Carl Case
Jared Casper
Bryan Catanzaro
Greg Diamos
Erich Elsen
Ryan Prenger
Sanjeev Satheesh
Shubho Sengupta
Adam Coates
4
+
A Call for Clarity in Reporting BLEU Scores
2018
Matt Post
4
+
PDF
Chat
fairseq: A Fast, Extensible Toolkit for Sequence Modeling
2019
Myle Ott
Sergey Edunov
Alexei Baevski
Angela Fan
Sam Gross
Nathan Ng
David Grangier
Michael Auli
4
+
Deep Ensembles: A Loss Landscape Perspective
2019
Stanislav Fort
Huiyi Hu
Balaji Lakshminarayanan
3
+
Reverse KL-Divergence Training of Prior Networks: Improved Uncertainty and Adversarial Robustness
2019
Andrey Malinin
Mark Gales
3
+
Understanding Measures of Uncertainty for Adversarial Example Detection
2018
Lewis Smith
Yarin Gal
3
+
Uncertainty in Structured Prediction.
2020
Andrey Malinin
Mark Gales
3
+
Predictive Uncertainty Estimation via Prior Networks
2018
Andrey Malinin
Mark Gales
3
+
Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
2013
Ian Goodfellow
Yaroslav Bulatov
Julian Ibarz
Sacha Arnoud
Vinay Shet
3
+
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
2016
Dan Hendrycks
Kevin Gimpel
3
+
Calibration of Encoder Decoder Models for Neural Machine Translation.
2019
Aviral Kumar
Sunita Sarawagi
3
+
Attention Is All You Need
2017
Ashish Vaswani
Noam Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan N. Gomez
Łukasz Kaiser
Illia Polosukhin
3
+
LSUN: Construction of a Large-scale Image Dataset using Deep Learning with Humans in the Loop
2015
Fisher Yu
Yinda Zhang
Shuran Song
Ari Seff
Jianxiong Xiao
3
+
Improving Back-Translation with Uncertainty-based Confidence Estimation
2019
Shuo Wang
Yang Liu
Chao Wang
Huanbo Luan
Maosong Sun
2
+
Hydra: Preserving Ensemble Diversity for Model Distillation
2020
Linh Tran
Bastiaan S. Veeling
Kevin A. Roth
Jakub Świątkowski
Joshua V. Dillon
Jasper Snoek
Stephan Mandt
Tim Salimans
Sebastian Nowozin
Rodolphe Jenatton
2
+
Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation
2016
Yonghui Wu
Mike Schuster
Zhifeng Chen
Quoc V. Le
Mohammad Norouzi
Wolfgang Macherey
Maxim Krikun
Yuan Cao
Qin Gao
Klaus Macherey
2
+
Towards Evaluating the Robustness of Neural Networks
2016
Nicholas Carlini
David Wagner
2
+
Bayesian Dark Knowledge
2015
Anoop Korattikara
Vivek Rathod
Kevin J. Murphy
Max Welling
2
+
PDF
Chat
Distillation as a Defense to Adversarial Perturbations Against Deep Neural Networks
2016
Nicolas Papernot
Patrick McDaniel
Xi Wu
Somesh Jha
Ananthram Swami
2
+
PDF
Chat
Boosting Adversarial Attacks with Momentum
2018
Yinpeng Dong
Fangzhou Liao
Tianyu Pang
Hang Su
Jun Zhu
Xiaolin Hu
Jianguo Li
2
+
PDF
Chat
Multi-task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics
2018
Roberto Cipolla
Yarin Gal
Alex Kendall
2
+
Distilling Model Knowledge
2015
George Papamakarios
2
+
PDF
Chat
Sequence-Level Knowledge Distillation
2016
Yoon Kim
Alexander M. Rush
2
+
Ensemble Distribution Distillation
2019
Andrey Malinin
Bruno Mlodozeniec
Mark Gales
2
+
Learning to Generate Long-term Future via Hierarchical Prediction
2017
Ruben Villegas
Shuicheng Yan
Yuliang Zou
Sungryull Sohn
Xunyu Lin
Honglak Lee
2
+
Pattern Recognition and Machine Learning
2007
Christopher Bishop
2
+
Adversarial and Clean Data Are Not Twins
2023
Zhitao Gong
Wenlu Wang
2
+
Evidential Deep Learning to Quantify Classification Uncertainty
2018
Murat Şensoy
Lance Kaplan
Melih Kandemir
2
+
Bayesian Learning via Stochastic Gradient Langevin Dynamics
2011
Max Welling
Yee Whye Teh
2
+
On the (Statistical) Detection of Adversarial Examples
2017
Kathrin Grosse
Praveen Manoharan
Nicolas Papernot
Michael Backes
Patrick McDaniel
2
+
Scaling Neural Machine Translation
2018
Myle Ott
Sergey Edunov
David Grangier
Michael Auli
2
+
On Detecting Adversarial Perturbations
2017
Jan Hendrik Metzen
Tim Genewein
Volker Fischer
Bastian Bischoff
2