Andrey Malinin

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Tackling Bias in the Dice Similarity Coefficient: Introducing NDSC for White Matter Lesion Segmentation 2023 Vatsal Raina
Nataliia Molchanova
Mara Graziani
Andrey Malinin
Henning Müller
Meritxell Bach Cuadra
Mark Gales
+ Tackling Bias in the Dice Similarity Coefficient: Introducing nDSC for White Matter Lesion Segmentation 2023 Vatsal Raina
Nataliia Molchanova
Mara Graziani
Andrey Malinin
Henning Müller
Meritxell Bach Cuadra
Mark Gales
+ Evaluating Robustness and Uncertainty of Graph Models Under Structural Distributional Shifts 2023 Gleb Bazhenov
Denis Kuznedelev
Andrey Malinin
Artem Babenko
Liudmila Prokhorenkova
+ Structural-Based Uncertainty in Deep Learning Across Anatomical Scales: Analysis in White Matter Lesion Segmentation 2023 Nataliia Molchanova
Vatsal Raina
Andrey Malinin
Francesco La Rosa
Adrien Depeursinge
Mark Gales
Cristina Granziera
Henning Müller
Mara Graziani
Meritxell Bach Cuadra
+ Shifts Marine Cargo Vessel Power Consumption Prediction Dataset 2022 Andrey Malinin
Ανδρέας Αθανασόπουλος
Muhamed Baraković
Meritxell Bach Cuadra
Mark Gales
Cristina Granziera
Mara Graziani
Nikolay Kartashev
Konstantinos G. Kyriakopoulos
Po‐Jui Lu
+ Shifts Marine Cargo Vessel Power Consumption Prediction Dataset 2022 Andrey Malinin
Ανδρέας Αθανασόπουλος
Muhamed Baraković
Meritxell Bach Cuadra
Mark Gales
Cristina Granziera
Mara Graziani
Nikolay Kartashev
Konstantinos G. Kyriakopoulos
Po‐Jui Lu
+ Shifts Marine Cargo Vessel Power Consumption Prediction Dataset 2022 Andrey Malinin
Ανδρέας Αθανασόπουλος
Muhamed Baraković
Meritxell Bach Cuadra
Mark Gales
Cristina Granziera
Mara Graziani
Nikolay Kartashev
Konstantinos G. Kyriakopoulos
Po‐Jui Lu
+ Shifts Multiple Sclerosis Lesion Segmentation Dataset Part 1 2022 Andrey Malinin
Ανδρέας Αθανασόπουλος
Muhamed Baraković
Meritxell Bach Cuadra
Mark Gales
Cristina Granziera
Mara Graziani
Nikolay Kartashev
Konstantinos G. Kyriakopoulos
Po‐Jui Lu
+ Shifts Multiple Sclerosis Lesion Segmentation Dataset Part 2 2022 Andrey Malinin
Ανδρέας Αθανασόπουλος
Muhamed Baraković
Meritxell Bach Cuadra
Mark Gales
Cristina Granziera
Mara Graziani
Nikolay Kartashev
Konstantinos G. Kyriakopoulos
Po‐Jui Lu
+ Shifts Multiple Sclerosis Lesion Segmentation Dataset Part 2 2022 Andrey Malinin
Ανδρέας Αθανασόπουλος
Muhamed Baraković
Meritxell Bach Cuadra
Mark Gales
Cristina Granziera
Mara Graziani
Nikolay Kartashev
Konstantinos G. Kyriakopoulos
Po‐Jui Lu
+ Shifts Multiple Sclerosis Lesion Segmentation Dataset Part 1 2022 Andrey Malinin
Ανδρέας Αθανασόπουλος
Muhamed Baraković
Meritxell Bach Cuadra
Mark Gales
Cristina Granziera
Mara Graziani
Nikolay Kartashev
Konstantinos G. Kyriakopoulos
Po‐Jui Lu
+ Shifts 2.0: Extending The Dataset of Real Distributional Shifts 2022 Andrey Malinin
Ανδρέας Αθανασόπουλος
Muhamed Baraković
Meritxell Bach Cuadra
Mark Gales
Cristina Granziera
Mara Graziani
Nikolay Kartashev
Konstantinos G. Kyriakopoulos
Po‐Jui Lu
+ Novel structural-scale uncertainty measures and error retention curves: application to multiple sclerosis 2022 Nataliia Molchanova
Vatsal Raina
Andrey Malinin
Francesco La Rosa
Henning Müller
Mark Gales
Cristina Granziera
Mara Graziani
Meritxell Bach Cuadra
+ Scaling Ensemble Distribution Distillation to Many Classes with Proxy Targets 2021 Max Ryabinin
Andrey Malinin
Mark Gales
+ Shifts: A Dataset of Real Distributional Shift Across Multiple Large-Scale Tasks 2021 Andrey Malinin
Neil Band
Ganshin
Alexander -
German Chesnokov
Yarin Gal
Mark Gales
Alexey Noskov
Andrey Ploskonosov
Liudmila Prokhorenkova
+ On the Periodic Behavior of Neural Network Training with Batch Normalization and Weight Decay 2021 Ekaterina Lobacheva
Maxim Kodryan
Nadezhda Chirkova
Andrey Malinin
Dmitry Vetrov
+ PDF Chat Ensemble Distillation Approaches for Grammatical Error Correction 2021 Yassir Fathullah
Mark Gales
Andrey Malinin
+ Scaling Ensemble Distribution Distillation to Many Classes with Proxy Targets 2021 Max Ryabinin
Andrey Malinin
Mark Gales
+ PDF Chat Uncertainty Measures in Neural Belief Tracking and the Effects on Dialogue Policy Performance 2021 Carel van Niekerk
Andrey Malinin
Christian Geishauser
Michael Heck
Hsien-chin Lin
Nurul Lubis
Shutong Feng
Milica Gašić
+ PDF Chat Multi-Sentence Resampling: A Simple Approach to Alleviate Dataset Length Bias and Beam-Search Degradation 2021 Ivan Provilkov
Andrey Malinin
+ Multi-Sentence Resampling: A Simple Approach to Alleviate Dataset Length Bias and Beam-Search Degradation 2021 Ivan Provilkov
Andrey Malinin
+ Uncertainty Measures in Neural Belief Tracking and the Effects on Dialogue Policy Performance 2021 Carel van Niekerk
Andrey Malinin
Christian Geishauser
Michael Heck
Hsien-chin Lin
Nurul Lubis
Shutong Feng
Milica Gašić
+ Shifts: A Dataset of Real Distributional Shift Across Multiple Large-Scale Tasks 2021 Andrey Malinin
Neil Band
Ganshin
Alexander -
German Chesnokov
Yarin Gal
Mark Gales
Alexey Noskov
Andrey Ploskonosov
Liudmila Prokhorenkova
+ On the Periodic Behavior of Neural Network Training with Batch Normalization and Weight Decay 2021 Ekaterina Lobacheva
Maxim Kodryan
Nadezhda Chirkova
Andrey Malinin
Dmitry Vetrov
+ Ensemble Distillation Approaches for Grammatical Error Correction. 2020 Yassir Fathullah
Mark Gales
Andrey Malinin
+ Ensemble Distribution Distillation 2020 Andrey Malinin
Bruno Mlodozeniec
Mark Gales
+ Uncertainty in Structured Prediction. 2020 Andrey Malinin
Mark Gales
+ Uncertainty in Gradient Boosting via Ensembles 2020 Aleksei Ustimenko
Liudmila Prokhorenkova
Andrey Malinin
+ Regression Prior Networks 2020 Andrey Malinin
Sergey Chervontsev
Ivan Provilkov
Mark Gales
+ Uncertainty Estimation in Autoregressive Structured Prediction 2020 Andrey Malinin
Mark Gales
+ Ensemble Distillation Approaches for Grammatical Error Correction 2020 Yassir Fathullah
Mark Gales
Andrey Malinin
+ Reverse KL-Divergence Training of Prior Networks: Improved Uncertainty and Adversarial Robustness 2019 Andrey Malinin
Mark Gales
+ Ensemble Distribution Distillation 2019 Andrey Malinin
Bruno Mlodozeniec
Mark Gales
+ Reverse KL-Divergence Training of Prior Networks: Improved Uncertainty and Adversarial Robustness 2019 Andrey Malinin
Mark Gales
+ Prior Networks for Detection of Adversarial Attacks 2018 Andrey Malinin
Mark Gales
+ Predictive Uncertainty Estimation via Prior Networks 2018 Andrey Malinin
Mark Gales
+ Prior Networks for Detection of Adversarial Attacks 2018 Andrey Malinin
Mark Gales
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles 2016 Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
11
+ Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning 2015 Yarin Gal
Zoubin Ghahramani
11
+ Can you trust your model's uncertainty? Evaluating predictive uncertainty under dataset shift 2019 Yaniv Ovadia
Emily Fertig
Jie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
9
+ Ensemble Distribution Distillation 2020 Andrey Malinin
Bruno Mlodozeniec
Mark Gales
8
+ Distilling the Knowledge in a Neural Network 2015 Geoffrey E. Hinton
Oriol Vinyals
Jay B. Dean
8
+ Very Deep Convolutional Networks for Large-Scale Image Recognition 2014 Karen Simonyan
Andrew Zisserman
8
+ Efficient Estimation of Word Representations in Vector Space 2013 Tomáš Mikolov
Kai Chen
Greg S. Corrado
Jay B. Dean
8
+ Concrete Problems in AI Safety 2016 Dario Amodei
Chris Olah
Jacob Steinhardt
Paul F. Christiano
John Schulman
Dan Mané
6
+ Reverse KL-Divergence Training of Prior Networks: Improved Uncertainty and Adversarial Robustness 2019 Andrey Malinin
Mark Gales
5
+ Decomposition of Uncertainty for Active Learning and Reliable Reinforcement Learning in Stochastic Systems. 2017 Stefan Depeweg
José Miguel Hernández-Lobato
Finale Doshi‐Velez
Steffen Udluft
5
+ A Simple Baseline for Bayesian Uncertainty in Deep Learning 2019 Wesley J. Maddox
Timur Garipov
Pavel Izmailov
Dmitry Vetrov
Andrew Gordon Wilson
5
+ BatchBALD: Efficient and Diverse Batch Acquisition for Deep Bayesian Active Learning 2019 Andreas Kirsch
Joost van Amersfoort
Yarin Gal
5
+ Attention is All you Need 2017 Ashish Vaswani
Noam Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan N. Gomez
Łukasz Kaiser
Illia Polosukhin
5
+ A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks 2016 Dan Hendrycks
Kevin Gimpel
4
+ Neural Machine Translation by Jointly Learning to Align and Translate 2015 Dzmitry Bahdanau
Kyunghyun Cho
Yoshua Bengio
4
+ Adam: A Method for Stochastic Optimization 2014 Diederik P. Kingma
Jimmy Ba
4
+ PDF Chat Neural Machine Translation of Rare Words with Subword Units 2016 Rico Sennrich
Barry Haddow
Alexandra Birch
4
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
4
+ Deep Speech: Scaling up end-to-end speech recognition 2014 Awni Hannun
Carl Case
Jared Casper
Bryan Catanzaro
Greg Diamos
Erich Elsen
Ryan Prenger
Sanjeev Satheesh
Shubho Sengupta
Adam Coates
4
+ A Call for Clarity in Reporting BLEU Scores 2018 Matt Post
4
+ PDF Chat fairseq: A Fast, Extensible Toolkit for Sequence Modeling 2019 Myle Ott
Sergey Edunov
Alexei Baevski
Angela Fan
Sam Gross
Nathan Ng
David Grangier
Michael Auli
4
+ Deep Ensembles: A Loss Landscape Perspective 2019 Stanislav Fort
Huiyi Hu
Balaji Lakshminarayanan
3
+ Reverse KL-Divergence Training of Prior Networks: Improved Uncertainty and Adversarial Robustness 2019 Andrey Malinin
Mark Gales
3
+ Understanding Measures of Uncertainty for Adversarial Example Detection 2018 Lewis Smith
Yarin Gal
3
+ Uncertainty in Structured Prediction. 2020 Andrey Malinin
Mark Gales
3
+ Predictive Uncertainty Estimation via Prior Networks 2018 Andrey Malinin
Mark Gales
3
+ Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks 2013 Ian Goodfellow
Yaroslav Bulatov
Julian Ibarz
Sacha Arnoud
Vinay Shet
3
+ A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks 2016 Dan Hendrycks
Kevin Gimpel
3
+ Calibration of Encoder Decoder Models for Neural Machine Translation. 2019 Aviral Kumar
Sunita Sarawagi
3
+ Attention Is All You Need 2017 Ashish Vaswani
Noam Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan N. Gomez
Łukasz Kaiser
Illia Polosukhin
3
+ LSUN: Construction of a Large-scale Image Dataset using Deep Learning with Humans in the Loop 2015 Fisher Yu
Yinda Zhang
Shuran Song
Ari Seff
Jianxiong Xiao
3
+ Improving Back-Translation with Uncertainty-based Confidence Estimation 2019 Shuo Wang
Yang Liu
Chao Wang
Huanbo Luan
Maosong Sun
2
+ Hydra: Preserving Ensemble Diversity for Model Distillation 2020 Linh Tran
Bastiaan S. Veeling
Kevin A. Roth
Jakub Świątkowski
Joshua V. Dillon
Jasper Snoek
Stephan Mandt
Tim Salimans
Sebastian Nowozin
Rodolphe Jenatton
2
+ Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation 2016 Yonghui Wu
Mike Schuster
Zhifeng Chen
Quoc V. Le
Mohammad Norouzi
Wolfgang Macherey
Maxim Krikun
Yuan Cao
Qin Gao
Klaus Macherey
2
+ Towards Evaluating the Robustness of Neural Networks 2016 Nicholas Carlini
David Wagner
2
+ Bayesian Dark Knowledge 2015 Anoop Korattikara
Vivek Rathod
Kevin J. Murphy
Max Welling
2
+ PDF Chat Distillation as a Defense to Adversarial Perturbations Against Deep Neural Networks 2016 Nicolas Papernot
Patrick McDaniel
Xi Wu
Somesh Jha
Ananthram Swami
2
+ PDF Chat Boosting Adversarial Attacks with Momentum 2018 Yinpeng Dong
Fangzhou Liao
Tianyu Pang
Hang Su
Jun Zhu
Xiaolin Hu
Jianguo Li
2
+ PDF Chat Multi-task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics 2018 Roberto Cipolla
Yarin Gal
Alex Kendall
2
+ Distilling Model Knowledge 2015 George Papamakarios
2
+ PDF Chat Sequence-Level Knowledge Distillation 2016 Yoon Kim
Alexander M. Rush
2
+ Ensemble Distribution Distillation 2019 Andrey Malinin
Bruno Mlodozeniec
Mark Gales
2
+ Learning to Generate Long-term Future via Hierarchical Prediction 2017 Ruben Villegas
Shuicheng Yan
Yuliang Zou
Sungryull Sohn
Xunyu Lin
Honglak Lee
2
+ Pattern Recognition and Machine Learning 2007 Christopher Bishop
2
+ Adversarial and Clean Data Are Not Twins 2023 Zhitao Gong
Wenlu Wang
2
+ Evidential Deep Learning to Quantify Classification Uncertainty 2018 Murat Şensoy
Lance Kaplan
Melih Kandemir
2
+ Bayesian Learning via Stochastic Gradient Langevin Dynamics 2011 Max Welling
Yee Whye Teh
2
+ On the (Statistical) Detection of Adversarial Examples 2017 Kathrin Grosse
Praveen Manoharan
Nicolas Papernot
Michael Backes
Patrick McDaniel
2
+ Scaling Neural Machine Translation 2018 Myle Ott
Sergey Edunov
David Grangier
Michael Auli
2
+ On Detecting Adversarial Perturbations 2017 Jan Hendrik Metzen
Tim Genewein
Volker Fischer
Bastian Bischoff
2