+
PDF
Chat
|
Probabilistic Inversion Modeling of Gas Emissions: A Gradient-Based MCMC
Estimation of Gaussian Plume Parameters
|
2024
|
Thomas B. Newman
Christopher Nemeth
Matthew R. Jones
Philip Jonathan
|
+
PDF
Chat
|
Metropolis--Hastings with Scalable Subsampling
|
2024
|
Estev茫o Prado
Christopher Nemeth
Chris Sherlock
|
+
PDF
Chat
|
Scalable Monte Carlo for Bayesian Learning
|
2024
|
Paul Fearnhead
Christopher Nemeth
Chris J. Oates
Chris Sherlock
|
+
PDF
Chat
|
Diffusion Generative Modelling for Divide-and-Conquer MCMC
|
2024
|
C. Trojan
Paul Fearnhead
Christopher Nemeth
|
+
PDF
Chat
|
Robust Bayesian nonparametric variable selection for linear regression
|
2024
|
Alberto Cabezas
Marco Battiston
Christopher Nemeth
|
+
PDF
Chat
|
Markovian Flow Matching: Accelerating MCMC with Continuous Normalizing
Flows
|
2024
|
Alberto Cabezas
Louis Sharrock
Christopher Nemeth
|
+
PDF
Chat
|
Spatial Latent Gaussian Modelling with Change of Support
|
2024
|
Erick Chac贸n-Montalv谩n
Peter M. Atkinson
Christopher Nemeth
Benjam铆n M. Taylor
Paula Moraga
|
+
PDF
Chat
|
Position Paper: Bayesian Deep Learning in the Age of Large-Scale AI
|
2024
|
Theodore Papamarkou
Maria Skoularidou
Konstantina Palla
Laurence Aitchison
Julyan Arbel
David B. Dunson
Maurizio Filippone
Vincent Fortuin
Philipp Hennig
Aliaksandr Hubin
|
+
PDF
Chat
|
Multivariate sensitivity analysis for a large-scale climate impact and adaptation model
|
2023
|
Oluwole Oyebamiji
Christopher Nemeth
Paula A. Harrison
R. W. Dunford
George Cojocaru
|
+
PDF
Chat
|
Efficient and generalizable tuning strategies for stochastic gradient MCMC
|
2023
|
Jeremie Coullon
Leah F. South
Christopher Nemeth
|
+
PDF
Chat
|
Stochastic Gradient MCMC for Nonlinear State Space Models
|
2023
|
Christopher Aicher
Srshti Putcha
Christopher Nemeth
Paul Fearnhead
Emily B. Fox
|
+
|
Coin Sampling: Gradient-Based Bayesian Inference without Learning Rates
|
2023
|
Louis Sharrock
Christopher Nemeth
|
+
|
CoinEM: Tuning-Free Particle-Based Variational Inference for Latent Variable Models
|
2023
|
Louis Sharrock
Daniel Dodd
Christopher Nemeth
|
+
|
Learning Rate Free Sampling in Constrained Domains
|
2023
|
Louis Sharrock
Lester Mackey
Christopher Nemeth
|
+
PDF
Chat
|
SwISS: A scalable Markov chain Monte Carlo divide鈥恆nd鈥恈onquer strategy
|
2022
|
Callum Vyner
Christopher Nemeth
Chris Sherlock
|
+
|
Sequential estimation of temporally evolving latent space network models
|
2022
|
Kathryn Turnbull
Christopher Nemeth
Matthew A. Nunes
Tyler H. McCormick
|
+
PDF
Chat
|
Efficient and Generalizable Tuning Strategies for Stochastic Gradient MCMC
|
2022
|
Jeremie Coullon
Leah F. South
Christopher Nemeth
|
+
PDF
Chat
|
SGMCMCJax: a lightweight JAX library for stochastic gradient Markov chain Monte Carlo algorithms
|
2022
|
Jeremie Coullon
Christopher Nemeth
|
+
PDF
Chat
|
<b>GaussianProcesses.jl</b>: A Nonparametric Bayes Package for the <i>Julia</i> Language
|
2022
|
Jamie Fairbrother
Christopher Nemeth
Maxime Rischard
Johanni Brea
Thomas Pinder
|
+
|
Distances for Comparing Multisets and Sequences
|
2022
|
George Bolt
Sim贸n Lunag贸mez
Christopher Nemeth
|
+
|
Modelling Populations of Interaction Networks via Distance Metrics
|
2022
|
George Bolt
Sim贸n Lunag贸mez
Christopher Nemeth
|
+
|
SwISS: A Scalable Markov chain Monte Carlo Divide-and-Conquer Strategy
|
2022
|
Callum Vyner
Christopher Nemeth
Chris Sherlock
|
+
|
Transport Elliptical Slice Sampling
|
2022
|
Alberto Cabezas
Christopher Nemeth
|
+
|
Preferential Subsampling for Stochastic Gradient Langevin Dynamics
|
2022
|
Srshti Putcha
Christopher Nemeth
Paul Fearnhead
|
+
PDF
Chat
|
Semi-exact control functionals from Sard鈥檚 method
|
2021
|
Leah F. South
Toni Karvonen
Christopher Nemeth
Mark Girolami
Chris J. Oates
|
+
|
Gaussian Processes on Hypergraphs.
|
2021
|
Thomas Pinder
Kathryn Turnbull
Christopher Nemeth
David S. Leslie
|
+
|
Stochastic Gradient MCMC with Multi-Armed Bandit Tuning
|
2021
|
Jeremie Coullon
Leah F. South
Christopher Nemeth
|
+
|
Stochastic Gradient Markov Chain Monte Carlo
|
2021
|
Christopher Nemeth
Paul Fearnhead
|
+
|
A Probabilistic Assessment of the COVID-19 Lockdown on Air Quality in the UK
|
2021
|
Thomas Pinder
Michael Hollaway
Christopher Nemeth
P. J. Young
David S. Leslie
|
+
|
Sequential Estimation of Temporally Evolving Latent Space Network Models
|
2021
|
Kathryn Turnbull
Christopher Nemeth
Matthew A. Nunes
Tyler H. McCormick
|
+
|
Gaussian Processes on Hypergraphs
|
2021
|
Thomas Pinder
Kathryn Turnbull
Christopher Nemeth
David M. Leslie
|
+
|
Efficient and Generalizable Tuning Strategies for Stochastic Gradient MCMC
|
2021
|
Jeremie Coullon
Leah F. South
Christopher Nemeth
|
+
|
Robust Bayesian Nonparametric Variable Selection for Linear Regression
|
2021
|
Alberto Cabezas
Marco Battiston
Christopher Nemeth
|
+
|
Stochastic Gradient Markov Chain Monte Carlo
|
2021
|
Christopher Nemeth
Paul Fearnhead
|
+
PDF
Chat
|
Stochastic Gradient Markov Chain Monte Carlo
|
2020
|
Christopher Nemeth
Paul Fearnhead
|
+
|
Stein Variational Gaussian Processes
|
2020
|
Thomas Pinder
Christopher Nemeth
David S. Leslie
|
+
|
Stein Variational Gaussian Processes
|
2020
|
Thomas Pinder
Christopher Nemeth
David M. Leslie
|
+
|
Stochastic gradient Markov chain Monte Carlo
|
2020
|
Christopher Nemeth
Paul Fearnhead
|
+
|
Pseudo-Extended Markov Chain Monte Carlo
|
2019
|
Christopher Nemeth
Fredrik Lindsten
Maurizio Filippone
James Hensman
|
+
|
Stochastic Gradient Markov Chain Monte Carlo [R package sgmcmc version 0.2.5]
|
2019
|
Jack Baker
Christopher Nemeth
Paul Fearnhead
Emily B. Fox
|
+
|
Latent Space Representations of Hypergraphs
|
2019
|
Kathryn Turnbull
Sim贸n Lunag贸mez
Christopher Nemeth
Edoardo M. Airoldi
|
+
PDF
Chat
|
<b>sgmcmc</b>: An <i>R</i> Package for Stochastic Gradient Markov Chain Monte Carlo
|
2019
|
Jack Baker
Paul Fearnhead
Emily B. Fox
Christopher Nemeth
|
+
|
Latent Space Modelling of Hypergraph Data
|
2019
|
Kathryn Turnbull
Sim贸n Lunag贸mez
Christopher Nemeth
Edoardo M. Airoldi
|
+
|
Stochastic gradient Markov chain Monte Carlo
|
2019
|
Christopher Nemeth
Paul Fearnhead
|
+
|
Stochastic Gradient MCMC for Nonlinear State Space Models
|
2019
|
Christopher Aicher
Srshti Putcha
Christopher Nemeth
Paul Fearnhead
Emily B. Fox
|
+
|
Large-Scale Stochastic Sampling from the Probability Simplex
|
2018
|
Jack Baker
Paul Fearnhead
Emily B. Fox
Christopher Nemeth
|
+
PDF
Chat
|
Control variates for stochastic gradient MCMC
|
2018
|
Jack Baker
Paul Fearnhead
Emily B. Fox
Christopher Nemeth
|
+
|
Large-Scale Stochastic Sampling from the Probability Simplex
|
2018
|
Jack Baker
Paul Fearnhead
Emily B. Fox
Christopher Nemeth
|
+
|
GaussianProcesses.jl: A Nonparametric Bayes package for the Julia Language
|
2018
|
Jamie Fairbrother
Christopher Nemeth
Maxime Rischard
Johanni Brea
Thomas Pinder
|
+
|
sgmcmc: An R Package for Stochastic Gradient Markov Chain Monte Carlo
|
2017
|
Jack Baker
Paul Fearnhead
Emily B. Fox
Christopher Nemeth
|
+
|
Pseudo-extended Markov chain Monte Carlo
|
2017
|
Christopher Nemeth
Fredrik Lindsten
Maurizio Filippone
James Hensman
|
+
PDF
Chat
|
Merging MCMC Subposteriors through Gaussian-Process Approximations
|
2017
|
Christopher Nemeth
Chris Sherlock
|
+
|
Control Variates for Stochastic Gradient MCMC
|
2017
|
Jack Baker
Paul Fearnhead
Emily B. Fox
Christopher Nemeth
|
+
|
Control Variates for Stochastic Gradient MCMC
|
2017
|
Jack W. Baker
Paul Fearnhead
Emily B. Fox
Christopher Nemeth
|
+
|
Pseudo-extended Markov chain Monte Carlo
|
2017
|
Christopher Nemeth
Fredrik Lindsten
Maurizio Filippone
James Hensman
|
+
|
sgmcmc: An R Package for Stochastic Gradient Markov Chain Monte Carlo
|
2017
|
Jack W. Baker
Paul Fearnhead
Emily B. Fox
Christopher Nemeth
|
+
PDF
Chat
|
Particle Metropolis-adjusted Langevin algorithms
|
2016
|
Christopher Nemeth
Chris Sherlock
Paul Fearnhead
|
+
|
Merging MCMC Subposteriors through Gaussian-Process Approximations
|
2016
|
Christopher Nemeth
Chris Sherlock
|
+
|
Merging MCMC Subposteriors through Gaussian-Process Approximations
|
2016
|
Christopher Nemeth
Chris Sherlock
|
+
PDF
Chat
|
Particle Approximations of the Score and Observed Information Matrix for Parameter Estimation in State鈥揝pace Models With Linear Computational Cost
|
2015
|
Christopher Nemeth
Paul Fearnhead
Lyudmila Mihaylova
|
+
|
Particle Metropolis-adjusted Langevin algorithms
|
2014
|
Christopher Nemeth
Chris Sherlock
Paul Fearnhead
|
+
PDF
Chat
|
Sequential Monte Carlo Methods for State and Parameter Estimation in Abruptly Changing Environments
|
2014
|
Christopher Nemeth
Paul Fearnhead
Lyudmila Mihaylova
|
+
|
Particle Metropolis adjusted Langevin algorithms for state space models
|
2014
|
Christopher Nemeth
Paul Fearnhead
|
+
|
Particle Metropolis-adjusted Langevin algorithms
|
2014
|
Christopher Nemeth
Chris Sherlock
Paul Fearnhead
|
+
|
Particle approximations of the score and observed information matrix for parameter estimation in state space models with linear computational cost
|
2013
|
Christopher Nemeth
Paul Fearnhead
Lyudmila Mihaylova
|