Christopher Nemeth

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Probabilistic Inversion Modeling of Gas Emissions: A Gradient-Based MCMC Estimation of Gaussian Plume Parameters 2024 Thomas B. Newman
Christopher Nemeth
Matthew R. Jones
Philip Jonathan
+ PDF Chat Metropolis--Hastings with Scalable Subsampling 2024 Estev茫o Prado
Christopher Nemeth
Chris Sherlock
+ PDF Chat Scalable Monte Carlo for Bayesian Learning 2024 Paul Fearnhead
Christopher Nemeth
Chris J. Oates
Chris Sherlock
+ PDF Chat Diffusion Generative Modelling for Divide-and-Conquer MCMC 2024 C. Trojan
Paul Fearnhead
Christopher Nemeth
+ PDF Chat Robust Bayesian nonparametric variable selection for linear regression 2024 Alberto Cabezas
Marco Battiston
Christopher Nemeth
+ PDF Chat Markovian Flow Matching: Accelerating MCMC with Continuous Normalizing Flows 2024 Alberto Cabezas
Louis Sharrock
Christopher Nemeth
+ PDF Chat Spatial Latent Gaussian Modelling with Change of Support 2024 Erick Chac贸n-Montalv谩n
Peter M. Atkinson
Christopher Nemeth
Benjam铆n M. Taylor
Paula Moraga
+ PDF Chat Position Paper: Bayesian Deep Learning in the Age of Large-Scale AI 2024 Theodore Papamarkou
Maria Skoularidou
Konstantina Palla
Laurence Aitchison
Julyan Arbel
David B. Dunson
Maurizio Filippone
Vincent Fortuin
Philipp Hennig
Aliaksandr Hubin
+ PDF Chat Multivariate sensitivity analysis for a large-scale climate impact and adaptation model 2023 Oluwole Oyebamiji
Christopher Nemeth
Paula A. Harrison
R. W. Dunford
George Cojocaru
+ PDF Chat Efficient and generalizable tuning strategies for stochastic gradient MCMC 2023 Jeremie Coullon
Leah F. South
Christopher Nemeth
+ PDF Chat Stochastic Gradient MCMC for Nonlinear State Space Models 2023 Christopher Aicher
Srshti Putcha
Christopher Nemeth
Paul Fearnhead
Emily B. Fox
+ Coin Sampling: Gradient-Based Bayesian Inference without Learning Rates 2023 Louis Sharrock
Christopher Nemeth
+ CoinEM: Tuning-Free Particle-Based Variational Inference for Latent Variable Models 2023 Louis Sharrock
Daniel Dodd
Christopher Nemeth
+ Learning Rate Free Sampling in Constrained Domains 2023 Louis Sharrock
Lester Mackey
Christopher Nemeth
+ PDF Chat SwISS: A scalable Markov chain Monte Carlo divide鈥恆nd鈥恈onquer strategy 2022 Callum Vyner
Christopher Nemeth
Chris Sherlock
+ Sequential estimation of temporally evolving latent space network models 2022 Kathryn Turnbull
Christopher Nemeth
Matthew A. Nunes
Tyler H. McCormick
+ PDF Chat Efficient and Generalizable Tuning Strategies for Stochastic Gradient MCMC 2022 Jeremie Coullon
Leah F. South
Christopher Nemeth
+ PDF Chat SGMCMCJax: a lightweight JAX library for stochastic gradient Markov chain Monte Carlo algorithms 2022 Jeremie Coullon
Christopher Nemeth
+ PDF Chat <b>GaussianProcesses.jl</b>: A Nonparametric Bayes Package for the <i>Julia</i> Language 2022 Jamie Fairbrother
Christopher Nemeth
Maxime Rischard
Johanni Brea
Thomas Pinder
+ Distances for Comparing Multisets and Sequences 2022 George Bolt
Sim贸n Lunag贸mez
Christopher Nemeth
+ Modelling Populations of Interaction Networks via Distance Metrics 2022 George Bolt
Sim贸n Lunag贸mez
Christopher Nemeth
+ SwISS: A Scalable Markov chain Monte Carlo Divide-and-Conquer Strategy 2022 Callum Vyner
Christopher Nemeth
Chris Sherlock
+ Transport Elliptical Slice Sampling 2022 Alberto Cabezas
Christopher Nemeth
+ Preferential Subsampling for Stochastic Gradient Langevin Dynamics 2022 Srshti Putcha
Christopher Nemeth
Paul Fearnhead
+ PDF Chat Semi-exact control functionals from Sard鈥檚 method 2021 Leah F. South
Toni Karvonen
Christopher Nemeth
Mark Girolami
Chris J. Oates
+ Gaussian Processes on Hypergraphs. 2021 Thomas Pinder
Kathryn Turnbull
Christopher Nemeth
David S. Leslie
+ Stochastic Gradient MCMC with Multi-Armed Bandit Tuning 2021 Jeremie Coullon
Leah F. South
Christopher Nemeth
+ Stochastic Gradient Markov Chain Monte Carlo 2021 Christopher Nemeth
Paul Fearnhead
+ A Probabilistic Assessment of the COVID-19 Lockdown on Air Quality in the UK 2021 Thomas Pinder
Michael Hollaway
Christopher Nemeth
P. J. Young
David S. Leslie
+ Sequential Estimation of Temporally Evolving Latent Space Network Models 2021 Kathryn Turnbull
Christopher Nemeth
Matthew A. Nunes
Tyler H. McCormick
+ Gaussian Processes on Hypergraphs 2021 Thomas Pinder
Kathryn Turnbull
Christopher Nemeth
David M. Leslie
+ Efficient and Generalizable Tuning Strategies for Stochastic Gradient MCMC 2021 Jeremie Coullon
Leah F. South
Christopher Nemeth
+ Robust Bayesian Nonparametric Variable Selection for Linear Regression 2021 Alberto Cabezas
Marco Battiston
Christopher Nemeth
+ Stochastic Gradient Markov Chain Monte Carlo 2021 Christopher Nemeth
Paul Fearnhead
+ PDF Chat Stochastic Gradient Markov Chain Monte Carlo 2020 Christopher Nemeth
Paul Fearnhead
+ Stein Variational Gaussian Processes 2020 Thomas Pinder
Christopher Nemeth
David S. Leslie
+ Stein Variational Gaussian Processes 2020 Thomas Pinder
Christopher Nemeth
David M. Leslie
+ Stochastic gradient Markov chain Monte Carlo 2020 Christopher Nemeth
Paul Fearnhead
+ Pseudo-Extended Markov Chain Monte Carlo 2019 Christopher Nemeth
Fredrik Lindsten
Maurizio Filippone
James Hensman
+ Stochastic Gradient Markov Chain Monte Carlo [R package sgmcmc version 0.2.5] 2019 Jack Baker
Christopher Nemeth
Paul Fearnhead
Emily B. Fox
+ Latent Space Representations of Hypergraphs 2019 Kathryn Turnbull
Sim贸n Lunag贸mez
Christopher Nemeth
Edoardo M. Airoldi
+ PDF Chat <b>sgmcmc</b>: An <i>R</i> Package for Stochastic Gradient Markov Chain Monte Carlo 2019 Jack Baker
Paul Fearnhead
Emily B. Fox
Christopher Nemeth
+ Latent Space Modelling of Hypergraph Data 2019 Kathryn Turnbull
Sim贸n Lunag贸mez
Christopher Nemeth
Edoardo M. Airoldi
+ Stochastic gradient Markov chain Monte Carlo 2019 Christopher Nemeth
Paul Fearnhead
+ Stochastic Gradient MCMC for Nonlinear State Space Models 2019 Christopher Aicher
Srshti Putcha
Christopher Nemeth
Paul Fearnhead
Emily B. Fox
+ Large-Scale Stochastic Sampling from the Probability Simplex 2018 Jack Baker
Paul Fearnhead
Emily B. Fox
Christopher Nemeth
+ PDF Chat Control variates for stochastic gradient MCMC 2018 Jack Baker
Paul Fearnhead
Emily B. Fox
Christopher Nemeth
+ Large-Scale Stochastic Sampling from the Probability Simplex 2018 Jack Baker
Paul Fearnhead
Emily B. Fox
Christopher Nemeth
+ GaussianProcesses.jl: A Nonparametric Bayes package for the Julia Language 2018 Jamie Fairbrother
Christopher Nemeth
Maxime Rischard
Johanni Brea
Thomas Pinder
+ sgmcmc: An R Package for Stochastic Gradient Markov Chain Monte Carlo 2017 Jack Baker
Paul Fearnhead
Emily B. Fox
Christopher Nemeth
+ Pseudo-extended Markov chain Monte Carlo 2017 Christopher Nemeth
Fredrik Lindsten
Maurizio Filippone
James Hensman
+ PDF Chat Merging MCMC Subposteriors through Gaussian-Process Approximations 2017 Christopher Nemeth
Chris Sherlock
+ Control Variates for Stochastic Gradient MCMC 2017 Jack Baker
Paul Fearnhead
Emily B. Fox
Christopher Nemeth
+ Control Variates for Stochastic Gradient MCMC 2017 Jack W. Baker
Paul Fearnhead
Emily B. Fox
Christopher Nemeth
+ Pseudo-extended Markov chain Monte Carlo 2017 Christopher Nemeth
Fredrik Lindsten
Maurizio Filippone
James Hensman
+ sgmcmc: An R Package for Stochastic Gradient Markov Chain Monte Carlo 2017 Jack W. Baker
Paul Fearnhead
Emily B. Fox
Christopher Nemeth
+ PDF Chat Particle Metropolis-adjusted Langevin algorithms 2016 Christopher Nemeth
Chris Sherlock
Paul Fearnhead
+ Merging MCMC Subposteriors through Gaussian-Process Approximations 2016 Christopher Nemeth
Chris Sherlock
+ Merging MCMC Subposteriors through Gaussian-Process Approximations 2016 Christopher Nemeth
Chris Sherlock
+ PDF Chat Particle Approximations of the Score and Observed Information Matrix for Parameter Estimation in State鈥揝pace Models With Linear Computational Cost 2015 Christopher Nemeth
Paul Fearnhead
Lyudmila Mihaylova
+ Particle Metropolis-adjusted Langevin algorithms 2014 Christopher Nemeth
Chris Sherlock
Paul Fearnhead
+ PDF Chat Sequential Monte Carlo Methods for State and Parameter Estimation in Abruptly Changing Environments 2014 Christopher Nemeth
Paul Fearnhead
Lyudmila Mihaylova
+ Particle Metropolis adjusted Langevin algorithms for state space models 2014 Christopher Nemeth
Paul Fearnhead
+ Particle Metropolis-adjusted Langevin algorithms 2014 Christopher Nemeth
Chris Sherlock
Paul Fearnhead
+ Particle approximations of the score and observed information matrix for parameter estimation in state space models with linear computational cost 2013 Christopher Nemeth
Paul Fearnhead
Lyudmila Mihaylova
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Optimal Scaling of Discrete Approximations to Langevin Diffusions 1998 Gareth O. Roberts
Jeffrey S. Rosenthal
12
+ PDF Chat Exponential Convergence of Langevin Distributions and Their Discrete Approximations 1996 Gareth O. Roberts
Richard L. Tweedie
8
+ Bayesian Sampling Using Stochastic Gradient Thermostats 2014 Nan Ding
Youhan Fang
Ryan Babbush
Changyou Chen
Robert D. Skeel
Hartmut Neven
8
+ Bayesian Learning via Stochastic Gradient Langevin Dynamics 2011 Max Welling
Yee Whye Teh
8
+ PDF Chat <i>Stan</i>: A Probabilistic Programming Language 2017 Bob Carpenter
Andrew Gelman
Matthew D. Hoffman
Daniel C. Lee
Ben Goodrich
Michael Betancourt
Marcus A. Brubaker
Jiqiang Guo
Peter Li
Allen Riddell
7
+ Spatial Point Processes 2011 Mark Huber
7
+ PDF Chat Particle Markov Chain Monte Carlo Methods 2010 Christophe Andrieu
Arnaud Doucet
Roman Holenstein
7
+ Stochastic Gradient Riemannian Langevin Dynamics on the Probability Simplex 2013 Sam Patterson
Yee Whye Teh
7
+ PDF Chat Weak convergence and optimal scaling of random walk Metropolis algorithms 1997 Susan A. Gelman
Walter R. Gilks
Gareth O. Roberts
6
+ PDF Chat Riemann Manifold Langevin and Hamiltonian Monte Carlo Methods 2011 Mark Girolami
Ben Calderhead
6
+ PDF Chat <b>sgmcmc</b>: An <i>R</i> Package for Stochastic Gradient Markov Chain Monte Carlo 2019 Jack Baker
Paul Fearnhead
Emily B. Fox
Christopher Nemeth
6
+ None 2000 Arnaud Doucet
Simon Godsill
Christophe Andrieu
6
+ PDF Chat Control variates for stochastic gradient MCMC 2018 Jack Baker
Paul Fearnhead
Emily B. Fox
Christopher Nemeth
6
+ Variance Reduction in Stochastic Gradient Langevin Dynamics. 2016 Kumar Avinava Dubey
Sashank J. Reddi
Sinead A. Williamson
Barnab谩s P贸czos
Alexander J. Smola
Eric P. Xing
6
+ Stochastic Gradient Hamiltonian Monte Carlo 2014 Tianqi Chen
Emily B. Fox
Carlos Guestrin
5
+ Optimal scaling for various Metropolis-Hastings algorithms 2001 Gareth O. Roberts
Jeffrey S. Rosenthal
5
+ Novel approach to nonlinear/non-Gaussian Bayesian state estimation 1993 Neil Gordon
David Salmond
A. F. M. Smith
5
+ Maximum Likelihood from Incomplete Data Via the <i>EM</i> Algorithm 1977 A. P. Dempster
N. M. Laird
Donald B. Rubin
5
+ PDF Chat Handbook of Markov Chain Monte Carlo 2011 Steve Brooks
Andrew Gelman
Galin L. Jones
Xiao鈥怢i Meng
5
+ The True Cost of Stochastic Gradient Langevin Dynamics 2017 Tigran Nagapetyan
A. Duncan
Leonard Hasenclever
Sebastian J. Vollmer
艁ukasz Szpruch
Konstantinos C. Zygalakis
5
+ A tutorial on adaptive MCMC 2008 Christophe Andrieu
Johannes Thoms
5
+ Consistency and fluctuations for stochastic gradient Langevin dynamics 2016 Yee Whye Teh
Alexandre H. Thi茅ry
Sebastian J. Vollmer
5
+ Exploration of the (non-)asymptotic bias and variance of stochastic gradient langevin dynamics 2016 Sebastian J. Vollmer
Konstantinos C. Zygalakis
Yee Whye Teh
5
+ Scalable MCMC for Mixed Membership Stochastic Blockmodels 2016 Wenzhe Li
Sungjin Ahn
Max Welling
4
+ Measuring Sample Quality with Kernels 2017 Jackson Gorham
Lester Mackey
4
+ Bayesian Posterior Sampling via Stochastic Gradient Fisher Scoring 2012 Sungjin Ahn
Anoop Korattikara
Max Welling
4
+ Approximating Posterior Distributions by Mixtures 1993 Mike West
4
+ PDF Chat Bayes and big data: the consensus Monte Carlo algorithm 2016 Steven L. Scott
Alexander W. Blocker
Fernando V. Bonassi
Hugh Chipman
Edward I. George
Robert E. McCulloch
4
+ JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling 2003 Martyn Plummer
4
+ The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo 2014 Matthew D. Homan
Andrew Gelman
4
+ None 2000 David J. Lunn
Andrew C. Thomas
Nicky Best
David J. Spiegelhalter
4
+ PDF Chat Particle Approximations of the Score and Observed Information Matrix for Parameter Estimation in State鈥揝pace Models With Linear Computational Cost 2015 Christopher Nemeth
Paul Fearnhead
Lyudmila Mihaylova
4
+ A complete recipe for stochastic gradient MCMC 2015 Yi-An Ma
Tianqi Chen
Emily B. Fox
4
+ Edward: A library for probabilistic modeling, inference, and criticism 2016 Dustin Tran
Alp Kucukelbir
Adji B. Dieng
Maja Rudolph
Dawen Liang
David M. Blei
4
+ PDF Chat Stochastic Gradient Markov Chain Monte Carlo 2020 Christopher Nemeth
Paul Fearnhead
4
+ PDF Chat Particle Filters for Partially Observed Diffusions 2008 Paul Fearnhead
Omiros Papaspiliopoulos
Gareth O. Roberts
3
+ PDF Chat General Methods for Monitoring Convergence of Iterative Simulations 1998 Stephen P. Brooks
Andrew Gelman
3
+ On the Theory of Variance Reduction for Stochastic Gradient Monte Carlo 2018 Niladri S. Chatterji
Nicolas Flammarion
Yi-An Ma
Peter L. Bartlett
Michael I. Jordan
3
+ The pseudo-marginal approach for efficient Monte Carlo computations 2009 Christophe Andrieu
Gareth O. Roberts
3
+ PDF Chat Sequential Monte Carlo smoothing with application to parameter estimation in nonlinear state space models 2008 Jimmy Olsson
Olivier Capp茅
Randal Douc
脡ric Moulines
3
+ The promises and pitfalls of Stochastic Gradient Langevin Dynamics 2018 Nicolas Brosse
Alain Durmus
脡ric Moulines
3
+ PDF Chat Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems 2012 S茅bastien Bubeck
Nicol貌 Cesa鈥怋ianchi
3
+ PDF Chat Large-Scale Distributed Bayesian Matrix Factorization using Stochastic Gradient MCMC 2015 Sungjin Ahn
Anoop Korattikara
Nathan Liu
Suju Rajan
Max Welling
3
+ PDF Chat Exploiting Multi-Core Architectures for Reduced-Variance Estimation with Intractable Likelihoods 2015 Nial Friel
Antonietta Mira
Chris J. Oates
3
+ PDF Chat Particle metropolis hastings using Langevin dynamics 2013 Johan Dahlin
Fredrik Lindsten
Thomas B. Sch枚n
3
+ Control Functionals for Monte Carlo Integration 2016 Chris J. Oates
Mark Girolami
Nicol谩s Chopin
3
+ A kernelized stein discrepancy for goodness-of-fit tests 2016 Qiang Liu
Jason D. Lee
Michael I. Jordan
3
+ Smooth particle filters for likelihood evaluation and maximisation 2002 M. Pitt
3
+ On Markov chain Monte Carlo methods for tall data 2015 R茅mi Bardenet
Arnaud Doucet
Chris Holmes
3
+ Combined Parameter and State Estimation in Simulation-Based Filtering 2001 Jane Liu
West Mike
3