Panos Stinis

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat What do physics-informed DeepONets learn? Understanding and improving training for scientific computing applications 2024 Emily Williams
Amanda A. Howard
Brek Meuris
Panos Stinis
+ PDF Chat SPIKANs: Separable Physics-Informed Kolmogorov-Arnold Networks 2024 Bruno Jacob
Amanda A. Howard
Panos Stinis
+ PDF Chat Multifidelity Kolmogorov-Arnold Networks 2024 Amanda A. Howard
Bruno Jacob
Panos Stinis
+ PDF Chat SMS: Spiking Marching Scheme for Efficient Long Time Integration of Differential Equations 2024 Qian Zhang
Adar Kahana
George Em Karniadakis
Panos Stinis
+ PDF Chat Multiscale modeling framework of a constrained fluid with complex boundaries using twin neural networks 2024 Peiyuan Gao
George Em Karniadakis
Panos Stinis
+ PDF Chat Finite basis Kolmogorov-Arnold networks: domain decomposition for data-driven and physics-informed problems 2024 Amanda A. Howard
Bruno Jacob
Sarah H. Murphy
Alexander Heinlein
Panos Stinis
+ PDF Chat Self-adaptive weights based on balanced residual decay rate for physics-informed neural networks and deep operator networks 2024 Wenqian Chen
Amanda A. Howard
Panos Stinis
+ PDF Chat ViTO: Vision Transformer-Operator 2024 Oded Ovadia
Adar Kahana
Panos Stinis
Eli Turkel
Dan Givoli
George Em Karniadakis
+ PDF Chat Physics-Guided Continual Learning for Predicting Emerging Aqueous Organic Redox Flow Battery Material Performance 2024 Yucheng Fu
Amanda A. Howard
Chao Zeng
Yunxiang Chen
Peiyuan Gao
Panos Stinis
+ PDF Chat A multifidelity approach to continual learning for physical systems 2024 Amanda A. Howard
Yucheng Fu
Panos Stinis
+ PDF Chat Scientific machine learning for closure models in multiscale problems: a review 2024 Benjamin Sanderse
Panos Stinis
Romit Maulik
Shady E. Ahmed
+ PDF Chat Rethinking skip connections in Spiking Neural Networks with Time-To-First-Spike coding 2024 Youngeun Kim
Adar Kahana
Ruokai Yin
Yuhang Li
Panos Stinis
George Em Karniadakis
Priyadarshini Panda
+ Multifidelity domain decomposition-based physics-informed neural networks for time-dependent problems 2024 Alexander Heinlein
Amanda A. Howard
Damien Beecroft
Panos Stinis
+ PDF Chat Physics-informed machine learning of the correlation functions in bulk fluids 2024 Wenqian Chen
Peiyuan Gao
Panos Stinis
+ Stacked networks improve physics-informed training: Applications to neural networks and deep operator networks 2024 Amanda A. Howard
Sarah H. Murphy
Shady E. Ahmed
Panos Stinis
+ PDF Chat Self-Adaptive Weights Based on Balanced Residual Decay Rate for Physics-Informed Neural Networks and Deep Operator Networks 2024 Wenqian Chen
Amanda A. Howard
Panos Stinis
+ Scientific machine learning for closure models in multiscale problems: a review 2024 Benjamin Sanderse
Panos Stinis
Romit Maulik
Shady E. Ahmed
+ Feature-adjacent multi-fidelity physics-informed machine learning for partial differential equations 2023 Wenqian Chen
Panos Stinis
+ Physics-informed machine learning of redox flow battery based on a two-dimensional unit cell model 2023 Wenqian Chen
Yucheng Fu
Panos Stinis
+ Multifidelity deep operator networks for data-driven and physics-informed problems 2023 Amanda A. Howard
Mauro Perego
George Em Karniadakis
Panos Stinis
+ PDF Chat A hybrid deep neural operator/finite element method for ice-sheet modeling 2023 Qizhi He
Mauro Perego
Amanda A. Howard
George Em Karniadakis
Panos Stinis
+ PDF Chat A multifidelity deep operator network approach to closure for multiscale systems 2023 Shady E. Ahmed
Panos Stinis
+ PDF Chat Machine-learning-based spectral methods for partial differential equations 2023 Brek Meuris
Saad Qadeer
Panos Stinis
+ A Hybrid Deep Neural Operator/Finite Element Method for Ice-Sheet Modeling 2023 Qizhi He
Mauro Perego
Amanda A. Howard
George Em Karniadakis
Panos Stinis
+ SDYN-GANs: Adversarial Learning Methods for Multistep Generative Models for General Order Stochastic Dynamics 2023 Panos Stinis
Constantinos Daskalakis
Paul J. Atzberger
+ ViTO: Vision Transformer-Operator 2023 Oded Ovadia
Adar Kahana
Panos Stinis
Eli Turkel
George Em Karniadakis
+ A Multifidelity deep operator network approach to closure for multiscale systems 2023 Shady E. Ahmed
Panos Stinis
+ Feature-adjacent multi-fidelity physics-informed machine learning for partial differential equations 2023 Wenqian Chen
Panos Stinis
+ A multifidelity approach to continual learning for physical systems 2023 Amanda A. Howard
Yucheng Fu
Panos Stinis
+ PDF Chat Feature-Adjacent Multi-Fidelity Physics-Informed Machine Learning for Partial Differential Equations 2023 Wenqian Chen
Panos Stinis
+ PDF Chat Sdyn-Gans: Adversarial Learning Methods for Multistep Generative Models for General Order Stochastic Dynamics 2023 Panos Stinis
Konstantinos S. Daskalakis
Paul J. Atzberger
+ Physics-informed machine learning of redox flow battery based on a two-dimensional unit cell model 2023 Wenqian Chen
Yucheng Fu
Panos Stinis
+ Physics-informed machine learning of the correlation functions in bulk fluids 2023 Wenqian Chen
Peiyuan Gao
Panos Stinis
+ Exploring Learned Representations of Neural Networks with Principal Component Analysis 2023 Amit Harlev
Andrew G. Engel
Panos Stinis
Tony Chiang
+ Efficient kernel surrogates for neural network-based regression 2023 Saad Qadeer
Andrew G. Engel
Adam Tsou
Max Vargas
Panos Stinis
Tony Chiang
+ Stacked networks improve physics-informed training: applications to neural networks and deep operator networks 2023 Amanda A. Howard
Sarah H. Murphy
Shady E. Ahmed
Panos Stinis
+ Rethinking Skip Connections in Spiking Neural Networks with Time-To-First-Spike Coding 2023 Youngeun Kim
Adar Kahana
Ruokai Yin
Yuhang Li
Panos Stinis
George Em Karniadakis
Priyadarshini Panda
+ Physics-Guided Continual Learning for Accelerating Aqueous Organic Redox Flow Battery Material Discovery 2023 Yucheng Fu
Amanda A. Howard
Chao Zeng
Panos Stinis
+ PDF Chat Vibrational levels of a generalized Morse potential 2022 Saad Qadeer
Garrett D. Santis
Panos Stinis
Sotiris S. Xantheas
+ Enhanced physics-constrained deep neural networks for modeling vanadium redox flow battery 2022 Qizhi He
Yucheng Fu
Panos Stinis
Alexandre M. Tartakovsky
+ PDF Chat Vibrational Levels of a Generalized Morse Potential 2022 Saad Qadeer
Garrett D. Santis
Panos Stinis
Sotiris S. Xantheas
+ PDF Chat Physics-constrained deep neural network method for estimating parameters in a redox flow battery 2022 Qizhi He
Panos Stinis
Alexandre M. Tartakovsky
+ Enhanced Physics-Constrained Deep Neural Networks for Modeling Vanadium Redox Flow Battery 2022 Qizhi He
Yucheng Fu
Panos Stinis
Alexandre M. Tartakovsky
+ Multifidelity Deep Operator Networks For Data-Driven and Physics-Informed Problems 2022 Amanda A. Howard
Mauro Perego
George Em Karniadakis
Panos Stinis
+ Enhanced physics-constrained deep neural networks for modeling vanadium redox flow battery 2022 Qizhi He
Yucheng Fu
Panos Stinis
Alexandre M. Tartakovsky
+ SMS: Spiking Marching Scheme for Efficient Long Time Integration of Differential Equations 2022 Qian Zhang
Adar Kahana
George Em Karniadakis
Panos Stinis
+ Machine learning structure preserving brackets for forecasting irreversible processes 2021 Kookjin Lee
Nathaniel Trask
Panos Stinis
+ Machine-learning custom-made basis functions for partial differential equations. 2021 Brek Meuris
Saad Qadeer
Panos Stinis
+ PDF Chat Optimal renormalization of multiscale systems 2021 Jacob Price
Brek Meuris
Madelyn Shapiro
Panos Stinis
+ Machine learning structure preserving brackets for forecasting irreversible processes 2021 Kookjin Lee
Nathaniel Trask
Panos Stinis
+ Time-dependent stochastic basis adaptation for uncertainty quantification. 2021 Ramakrishna Tipireddy
Panos Stinis
Alexandre M. Tartakovsky
+ Optimal renormalization of multi-scale systems 2021 Jacob Price
Brek Meuris
Madelyn Shapiro
Panos Stinis
+ PDF Chat A Kinetic Monte Carlo Approach for Simulating Cascading Transmission Line Failure 2021 J. P. Roth
David A. Barajas‐Solano
Panos Stinis
Jonathan Weare
Mihai Anitescu
+ Structure-preserving Sparse Identification of Nonlinear Dynamics for Data-driven Modeling 2021 Kookjin Lee
Nathaniel Trask
Panos Stinis
+ Machine-learning custom-made basis functions for partial differential equations 2021 Brek Meuris
Saad Qadeer
Panos Stinis
+ Machine learning structure preserving brackets for forecasting irreversible processes 2021 Kookjin Lee
Nathaniel Trask
Panos Stinis
+ Time-dependent stochastic basis adaptation for uncertainty quantification 2021 Ramakrishna Tipireddy
Panos Stinis
Alexandre M. Tartakovsky
+ Physics-constrained deep neural network method for estimating parameters in a redox flow battery 2021 Qizhi He
Panos Stinis
Alexandre M. Tartakovsky
+ PDF Chat Improving Solution Accuracy and Convergence for Stochastic Physics Parameterizations with Colored Noise 2020 Panos Stinis
Huan Lei
Jing Li
Hui Wan
+ A Kinetic Monte Carlo Approach for Simulating Cascading Transmission Line Failure 2019 J. P. Roth
David A. Barajas‐Solano
Panos Stinis
Jonathan Weare
Mihai Anitescu
+ PDF Chat Enforcing constraints for interpolation and extrapolation in Generative Adversarial Networks 2019 Panos Stinis
Tobias Hagge
Alexandre M. Tartakovsky
Enoch Yeung
+ A comparative study of physics-informed neural network models for learning unknown dynamics and constitutive relations 2019 Ramakrishna Tipireddy
Paris Perdikaris
Panos Stinis
Alexandre M. Tartakovsky
+ Enforcing constraints for time series prediction in supervised, unsupervised and reinforcement learning 2019 Panos Stinis
+ PDF Chat Renormalized Reduced Order Models with Memory for Long Time Prediction 2019 Jacob Price
Panos Stinis
+ PDF Chat Mori-Zwanzig reduced models for uncertainty quantification 2019 Jing Li
Panos Stinis
+ Model reduction for a power grid model 2019 Jing Li
Panos Stinis
+ A Kinetic Monte Carlo Approach for Simulating Cascading Transmission Line Failure 2019 Jacob S. Roth
David A. Barajas‐Solano
Panos Stinis
Jonathan Weare
Mihai Anitescu
+ PDF Chat Doing the Impossible: Why Neural Networks Can Be Trained at All 2018 Nathan O. Hodas
Panos Stinis
+ Renormalization and blow-up for the 3D Euler equations 2018 Jacob Price
Panos Stinis
+ Doing the impossible: Why neural networks can be trained at all 2018 Nathan O. Hodas
Panos Stinis
+ Data-driven approach of quantifying uncertainty in complex systems with arbitrary randomness 2018 Huan Lei
Jing Li
Peiyuan Gao
Panos Stinis
Nathan Baker
+ PDF Chat Dynamic Looping of a Free-Draining Polymer 2018 Felix X.-F. Ye
Panos Stinis
Hong Qian
+ Mori-Zwanzig reduced models for uncertainty quantification 2018 Jing Li
Panos Stinis
+ Renormalization and blow-up for the 3D Euler equations 2018 Jacob Price
Panos Stinis
+ Doing the impossible: Why neural networks can be trained at all 2018 Nathan O. Hodas
Panos Stinis
+ PDF Chat Basis adaptation and domain decomposition for steady-state partial differential equations with random coefficients 2017 Ramakrishna Tipireddy
Panos Stinis
Alexandre M. Tartakovsky
+ Renormalized Reduced Order Models with Memory for Long Time Prediction 2017 Jacob Price
Panos Stinis
+ Stochastic basis adaptation and spatial domain decomposition for PDEs with random coefficients 2017 Ramakrishna Tipireddy
Panos Stinis
Alexandre M. Tartakovsky
+ Solving differential equations with unknown constitutive relations as recurrent neural networks 2017 Tobias Hagge
Panos Stinis
Enoch Yeung
Alexandre M. Tartakovsky
+ Renormalized Reduced Order Models with Memory for Long Time Prediction 2017 Jacob Price
Panos Stinis
+ PDF Chat A unified framework for mesh refinement in random and physical space 2016 Jing Li
Panos Stinis
+ Efficient failure probability calculation through mesh refinement 2015 Jing Li
Panos Stinis
+ PDF Chat Mesh refinement for uncertainty quantification through model reduction 2014 Jing Li
Panos Stinis
+ PDF Chat Renormalized reduced models for singular PDEs 2013 Panos Stinis
+ PDF Chat Numerical Computation of Solutions of the Critical Nonlinear Schrödinger Equation after the Singularity 2012 Panos Stinis
+ PDF Chat Stochastic global optimization as a filtering problem 2011 Panos Stinis
+ Path sampling for particle filters with application to multi-target tracking 2010 Vasileios Maroulas
Panos Stinis
+ A Girsanov Monte Carlo approach to particle filtering for multi-target tracking 2010 Vasileios Maroulas
Panos Stinis
+ PDF Chat Variance Reduction for Particle Filters of Systems With Time Scale Separation 2008 Dror Givon
Panos Stinis
Jonathan Weare
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Problem reduction, renormalization, and memory 2006 Alexandre J. Chorin
Panagiotis Stinis
12
+ PDF Chat Optimal prediction and the rate of decay for solutions of the Euler equations in two and three dimensions 2007 Ole H. Hald
Panagiotis Stinis
9
+ PDF Chat Extracting macroscopic dynamics: model problems and algorithms 2004 Dror Givon
Raz Kupferman
Andrew M. Stuart
8
+ PDF Chat A phase transition approach to detecting singularities of partial differential equations 2009 Panagiotis Stinis
8
+ PDF Chat Renormalized reduced models for singular PDEs 2013 Panos Stinis
8
+ PDF Chat Long-time integration of parametric evolution equations with physics-informed DeepONets 2022 Sifan Wang
Paris Perdikaris
6
+ Non-Markovian closure models for large eddy simulations using the Mori-Zwanzig formalism 2017 Eric Parish
Karthik Duraisamy
6
+ When and why PINNs fail to train: A neural tangent kernel perspective 2021 Sifan Wang
Xinling Yu
Paris Perdikaris
5
+ DGM: A deep learning algorithm for solving partial differential equations 2018 Justin Sirignano
Konstantinos Spiliopoulos
5
+ PDF Chat Multifidelity deep neural operators for efficient learning of partial differential equations with application to fast inverse design of nanoscale heat transport 2022 Lu Lu
Raphaël Pestourie
Steven G. Johnson
Giuseppe Romano
5
+ PDF Chat Higher Order Mori–Zwanzig Models for the Euler Equations 2007 Panagiotis Stinis
5
+ A composite neural network that learns from multi-fidelity data: Application to function approximation and inverse PDE problems 2019 Xuhui Meng
George Em Karniadakis
5
+ PDF Chat Data-driven parameterization of the generalized Langevin equation 2016 Huan Lei
Nathan Baker
Xiantao Li
5
+ Physics-informed neural networks (PINNs) for fluid mechanics: a review 2021 Shengze Cai
Zhiping Mao
Zhicheng Wang
Minglang Yin
George Em Karniadakis
5
+ PDF Chat Learning the solution operator of parametric partial differential equations with physics-informed DeepONets 2021 Sifan Wang
Hanwen Wang
Paris Perdikaris
4
+ Fourier Neural Operator for Parametric Partial Differential Equations 2020 Zongyi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
Kaushik Bhattacharya
Andrew M. Stuart
Anima Anandkumar
4
+ PDF Chat A multifidelity deep operator network approach to closure for multiscale systems 2023 Shady E. Ahmed
Panos Stinis
4
+ Bi-fidelity modeling of uncertain and partially unknown systems using DeepONets 2023 Subhayan De
Matthew Reynolds
Malik Hassanaly
Ryan King
Alireza Doostan
4
+ PDF Chat Data-assisted reduced-order modeling of extreme events in complex dynamical systems 2018 Zhong Wan
Pantelis R. Vlachas
Petros Koumoutsakos
Themistoklis P. Sapsis
4
+ Continual lifelong learning with neural networks: A review 2019 German I. Parisi
Ronald Kemker
Jose L. Part
Christopher Kanan
Stefan Wermter
4
+ Novel approach to nonlinear/non-Gaussian Bayesian state estimation 1993 Neil Gordon
David Salmond
A. F. M. Smith
4
+ PDF Chat Multifidelity modeling for Physics-Informed Neural Networks (PINNs) 2021 Michael Penwarden
Shandian Zhe
Akil Narayan
Robert M. Kirby
3
+ Improved Architectures and Training Algorithms for Deep Operator Networks 2022 Sifan Wang
Hanwen Wang
Paris Perdikaris
3
+ PDF Chat A novel sequential method to train physics informed neural networks for Allen Cahn and Cahn Hilliard equations 2022 Revanth Mattey
Susanta Ghosh
3
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
3
+ PDF Chat DAE-PINN: a physics-informed neural network model for simulating differential algebraic equations with application to power networks 2022 Christian Moya
Guang Lin
3
+ The FEniCS Project Version 1.5 2015 Martin Sandve Alnæs
Jan Blechta
Johan Hake
August Johansson
Benjamin Kehlet
Anders Logg
Chris Richardson
Johannes Ring
Marie E. Rognes
Garth N. Wells
3
+ PDF Chat Physics-constrained deep neural network method for estimating parameters in a redox flow battery 2022 Qizhi He
Panos Stinis
Alexandre M. Tartakovsky
3
+ Galerkin Neural Networks: A Framework for Approximating Variational Equations with Error Control 2021 Mark Ainsworth
Justin Dong
3
+ PDF Chat TRANSFER LEARNING ON MULTIFIDELITY DATA 2021 Dong Ho Song
Daniel M. Tartakovsky
3
+ PDF Chat Optimal renormalization of multiscale systems 2021 Jacob Price
Brek Meuris
Madelyn Shapiro
Panos Stinis
3
+ PDF Chat A physics-informed variational DeepONet for predicting crack path in quasi-brittle materials 2022 Somdatta Goswami
Minglang Yin
Yue Yu
George Em Karniadakis
3
+ PDF Chat Why Does Deep and Cheap Learning Work So Well? 2017 Henry W. Lin
Max Tegmark
David Rolnick
3
+ Physics-informed neural networks for inverse problems in nano-optics and metamaterials 2020 Yuyao Chen
Lu Lu
George Em Karniadakis
Luca Dal Negro
3
+ PDF Chat Physics-Informed Neural Networks for Power Systems 2020 George S. Misyris
Andreas Venzke
Spyros Chatzivasileiadis
3
+ ON TRANSFER LEARNING OF NEURAL NETWORKS USING BI-FIDELITY DATA FOR UNCERTAINTY PROPAGATION 2020 Subhayan De
Jolene Britton
Matthew Reynolds
Ryan Skinner
Kenneth E. Jansen
Alireza Doostan
3
+ PDF Chat Transient Dynamics Increasing Network Vulnerability to Cascading Failures 2008 Ingve Simonsen
Ľuboš Buzna
Karsten Peters
Stefan Bornholdt
Dirk Helbing
3
+ Sequential Monte Carlo Methods for Dynamic Systems 1998 Jun S. Liu
Rong Chen
3
+ PDF Chat Error estimates for DeepONets: a deep learning framework in infinite dimensions 2022 Samuel Lanthaler
Siddhartha Mishra
George Em Karniadakis
3
+ Lagrangian and Geometric Analysis of Finite-time Euler Singularities 2013 Tobias Grafke
Rainer Grauer
3
+ PDF Chat Robustness of power-law behavior in cascading line failure models 2017 Fiona Sloothaak
Sem Borst
Bert Zwart
3
+ PDF Chat PPINN: Parareal physics-informed neural network for time-dependent PDEs 2020 Xuhui Meng
Zhen Li
Dongkun Zhang
George Em Karniadakis
3
+ PDF Chat Development of high vorticity structures in incompressible 3D Euler equations 2015 D. S. Agafontsev
E. A. Kuznetsov
Alexei A. Mailybaev
3
+ PDF Chat On the limited memory BFGS method for large scale optimization 1989 Cheng‐Di Dong
Jorge Nocedal
3
+ PDF Chat Nonparametric forecasting of low-dimensional dynamical systems 2015 Tyrus Berry
Dimitrios Giannakis
John Harlim
3
+ PDF Chat Potentially singular solutions of the 3D axisymmetric Euler equations 2014 Guo Qing Luo
Thomas Y. Hou
3
+ Neural ordinary differential equations 2018 Ricky T. Q. Chen
Yulia Rubanova
Jesse Bettencourt
David Duvenaud
3
+ NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations 2020 Xiaowei Jin
Shengze Cai
Hui Li
George Em Karniadakis
3
+ High-Order Collocation Methods for Differential Equations with Random Inputs 2005 Dongbin Xiu
Jan S. Hesthaven
3
+ Neural Ordinary Differential Equations 2018 Ricky T. Q. Chen
Yulia Rubanova
Jesse Bettencourt
David Duvenaud
3