Author Description

Login to generate an author description

Ask a Question About This Mathematician

Several relaxations of envy-freeness, tailored to fair division in settings with indivisible goods, have been introduced within the last decade. Due to the lack of general existence results for most … Several relaxations of envy-freeness, tailored to fair division in settings with indivisible goods, have been introduced within the last decade. Due to the lack of general existence results for most of these concepts, great attention has been paid to establishing approximation guarantees. In this work, we propose a simple algorithm that is universally fair in the sense that it returns allocations that have good approximation guarantees with respect to four such fairness notions at once. In particular, this is the first algorithm achieving a (φ−1)-approximation of envy-freeness up to any good (EFX) and a 2/φ+2 -approximation of groupwise maximin share fairness (GMMS), where φ is the golden ratio. The best known approximation factor, in polynomial time, for either one of these fairness notions prior to this work was 1/2. Moreover, the returned allocation achieves envy-freeness up to one good (EF1) and a 2/3-approximation of pairwise maximin share fairness (PMMS). While EFX is our primary focus, we also exhibit how to fine-tune our algorithm and improve further the guarantees for GMMS or PMMS.Finally, we show that GMMS—and thus PMMS and EFX—allocations always exist when the number of goods does not exceed the number of agents by more than two.
Several relaxations of envy-freeness, tailored to fair division in settings with indivisible goods, have been introduced within the last decade. Due to the lack of general existence results for most … Several relaxations of envy-freeness, tailored to fair division in settings with indivisible goods, have been introduced within the last decade. Due to the lack of general existence results for most of these concepts, great attention has been paid to establishing approximation guarantees. In this work, we propose a simple algorithm that is universally fair in the sense that it returns allocations that have good approximation guarantees with respect to four such fairness notions at once. In particular, this is the first algorithm achieving a (φ−1)-approximation of envy-freeness up to any good (EFX) and a 2/φ+2 -approximation of groupwise maximin share fairness (GMMS), where φ is the golden ratio. The best known approximation factor, in polynomial time, for either one of these fairness notions prior to this work was 1/2. Moreover, the returned allocation achieves envy-freeness up to one good (EF1) and a 2/3-approximation of pairwise maximin share fairness (PMMS). While EFX is our primary focus, we also exhibit how to fine-tune our algorithm and improve further the guarantees for GMMS or PMMS.Finally, we show that GMMS—and thus PMMS and EFX—allocations always exist when the number of goods does not exceed the number of agents by more than two.
Coauthor Papers Together
Georgios Amanatidis 2
Evangelos Markakis 2
We study envy-free allocations of indivisible goods to agents in settings where each agent is unaware of the goods allocated to other agents. In particular, we propose the maximin aware … We study envy-free allocations of indivisible goods to agents in settings where each agent is unaware of the goods allocated to other agents. In particular, we propose the maximin aware (MMA) fairness measure, which guarantees that every agent, given the bundle allocated to her, is aware that she does not envy at least one other agent, even if she does not know how the other goods are distributed among other agents. We also introduce two of its relaxations and discuss their egalitarian guarantee and existence. Finally, we present a polynomial-time algorithm, which computes an allocation that approximately satisfies MMA or its relaxations. Interestingly, the returned allocation is also 1/2 -approximate EFX when all agents have subadditive valuations, which improves the algorithm in [Plaut and Roughgarden, SODA 2018].
We study the problem of allocating a set of indivisible goods among a set of agents in a fair and efficient manner. An allocation is said to be fair if … We study the problem of allocating a set of indivisible goods among a set of agents in a fair and efficient manner. An allocation is said to be fair if it is envy-free up to one good (EF1), which means that each agent prefers its own bundle over the bundle of any other agent up to the removal of one good. In addition, an allocation is deemed efficient if it satisfies Pareto efficiency. While each of these well-studied properties is easy to achieve separately, achieving them together is far from obvious. Recently, Caragiannis et al. (2016) established the surprising result that when agents have additive valuations for the goods, there always exists an allocation that simultaneously satisfies these two seemingly incompatible properties. Specifically, they showed that an allocation that maximizes the Nash social welfare objective is both EF1 and Pareto efficient. However, the problem of maximizing Nash social welfare is NP-hard. As a result, this approach does not provide an efficient algorithm for finding a fair and efficient allocation. In this paper, we bypass this barrier, and develop a pseudopolynomial time algorithm for finding allocations that are EF1 and Pareto efficient; in particular, when the valuations are bounded, our algorithm finds such an allocation in polynomial time. Furthermore, we establish a stronger existence result compared to Caragiannis et al. (2016): For additive valuations, there always exists an allocation that is EF1 and fractionally Pareto efficient. Another key contribution of our work is to show that our algorithm provides a polynomial-time 1.45-approximation to the Nash social welfare objective. This improves upon the best known approximation ratio for this problem (namely, the 2-approximation algorithm of Cole et al., 2017), and also matches the lower bound on the integrality gap of the convex program of Cole et al. (2017). Unlike many of the existing approaches, our algorithm is completely combinatorial, and relies on constructing integral Fisher markets wherein specific equilibria are not only efficient, but also fair.
We study the problem of allocating indivisible goods among n agents in a fair manner. For this problem, maximin share (MMS) is a well-studied solution concept which provides a fairness … We study the problem of allocating indivisible goods among n agents in a fair manner. For this problem, maximin share (MMS) is a well-studied solution concept which provides a fairness threshold. Specifically, maximin share is defined as the minimum utility that an agent can guarantee for herself when asked to partition the set of goods into n bundles such that the remaining (n-1) agents pick their bundles adversarially. An allocation is deemed to be fair if every agent gets a bundle whose valuation is at least her maximin share. Even though maximin shares provide a natural benchmark for fairness, it has its own drawbacks and, in particular, it is not sufficient to rule out unsatisfactory allocations. Motivated by these considerations, in this work we define a stronger notion of fairness, called groupwise maximin share guarantee (GMMS). In GMMS, we require that the maximin share guarantee is achieved not just with respect to the grand bundle, but also among all the subgroups of agents. Hence, this solution concept strengthens MMS and provides an ex-post fairness guarantee. We show that in specific settings, GMMS allocations always exist. We also establish the existence of approximate GMMS allocations under additive valuations, and develop a polynomial-time algorithm to find such allocations. Moreover, we establish a scale of fairness wherein we show that GMMS implies approximate envy freeness. Finally, we empirically demonstrate the existence of GMMS allocations in a large set of randomly generated instances. For the same set of instances, we additionally show that our algorithm achieves an approximation factor better than the established, worst-case bound.
Previous chapter Next chapter Full AccessProceedings Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms (SODA)A Little Charity Guarantees Almost Envy-FreenessBhaskar Ray Chaudhury, Telikepalli Kavitha, Kurt Mehlhorn, and Alkmini SgouritsaBhaskar … Previous chapter Next chapter Full AccessProceedings Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms (SODA)A Little Charity Guarantees Almost Envy-FreenessBhaskar Ray Chaudhury, Telikepalli Kavitha, Kurt Mehlhorn, and Alkmini SgouritsaBhaskar Ray Chaudhury, Telikepalli Kavitha, Kurt Mehlhorn, and Alkmini Sgouritsapp.2658 - 2672Chapter DOI:https://doi.org/10.1137/1.9781611975994.162PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstract Fair division of indivisible goods is a very well-studied problem. The goal of this problem is to distribute m goods to n agents in a “fair” manner, where every agent has a valuation for each subset of goods. We assume general valuations. Envy-freeness is the most extensively studied notion of fairness. However, envy-free allocations do not always exist when goods are indivisible. The notion of fairness we consider here is “envy-freeness up to any good” (EFX) where no agent envies another agent after the removal of any single good from the other agent's bundle. It is not known if such an allocation always exists even when n = 3. We show there is always a partition of the set of goods into n + 1 subsets (X1, …, Xn, P) where for i ϵ [n], Xi is the bundle allocated to agent i and the set P is unallocated (or donated to charity) such that we have: (1)envy-freeness up to any good,(2)no agent values P higher than her own bundle, and(3)fewer than n goods go to charity, i.e., |P| < n (typically m ≫ n). Our proof is constructive. When agents have additive valuations and |P| is large (i.e., when |P| is close to n), our allocation also has a good maximin share (MMS) guarantee. Moreover, a minor variant of our algorithm also shows the existence of an allocation which is 4/7 groupwise maximin share (GMMS): this is a notion of fairness stronger than MMS. This improves upon the current best bound of 1/2 known for an approximate GMMS allocation. Previous chapter Next chapter RelatedDetails Published:2020eISBN:978-1-61197-599-4 https://doi.org/10.1137/1.9781611975994Book Series Name:ProceedingsBook Code:PRDA20Book Pages:xxii + 3011
In fair division problems with indivisible goods it is well known that one cannot have any guarantees for the classic fairness notions of envy-freeness and proportionality. As a result, several … In fair division problems with indivisible goods it is well known that one cannot have any guarantees for the classic fairness notions of envy-freeness and proportionality. As a result, several relaxations have been introduced, most of which in quite recent works. We focus on four such notions, namely envy-freeness up to one good (EF1), envy-freeness up to any good (EFX), maximin share fairness (MMS), and pairwise maximin share fairness (PMMS). Since obtaining these relaxations also turns out to be problematic in several scenarios, approximate versions of them have also been considered. In this work, we investigate further the connections between the four notions mentioned above and their approximate versions. We establish several tight or almost tight results concerning the approximation quality that any of these notions guarantees for the others, providing an almost complete picture of this landscape. Some of our findings reveal interesting and surprising consequences regarding the power of these notions, e.g., PMMS and EFX provide the same worst-case guarantee for MMS, despite PMMS being a strictly stronger notion than EFX. We believe such implications provide further insight on the quality of approximately fair solutions.
Fair division is a fundamental problem in various multi-agent settings, where the goal is to divide a set of resources among agents in a fair manner. We study the case … Fair division is a fundamental problem in various multi-agent settings, where the goal is to divide a set of resources among agents in a fair manner. We study the case where m indivisible items need to be divided among n agents with additive valuations using the popular fairness notion of maximin share (MMS). An MMS allocation provides each agent a bundle worth at least her maximin share. While it is known that such an allocation need not exist, a series of work provided approximation algorithms for a 2/3-MMS allocation in which each agent receives a bundle worth at least 2/3 times her maximin share. More recently, Ghodsi et al. [EC'2018] showed the existence of a 3/4-MMS allocation and a PTAS to find a (3/4-\epsilon)-MMS allocation for an \epsilon > 0. Most of the previous works utilize intricate algorithms and require agents' approximate MMS values, which are computationally expensive to obtain. In this paper, we develop a new approach that gives a simple algorithm for showing the existence of a 3/4-MMS allocation. Furthermore, our approach is powerful enough to be easily extended in two directions: First, we get a strongly polynomial-time algorithm to find a 3/4-MMS allocation, where we do not need to approximate the MMS values at all. Second, we show that there always exists a (3/4 + 1/(12n))-MMS allocation, improving the best previous factor. This improves the approximation guarantee, most notably for small n. We note that 3/4 was the best factor known for n> 4.
We consider the problem of allocating indivisible goods fairly among n agents who have additive and submodular valuations for the goods. Our fairness guarantees are in terms of the maximin … We consider the problem of allocating indivisible goods fairly among n agents who have additive and submodular valuations for the goods. Our fairness guarantees are in terms of the maximin share , which is defined to be the maximum value that an agent can ensure for herself, if she were to partition the goods into n bundles, and then receive a minimum valued bundle. Since maximin fair allocations (i.e., allocations in which each agent gets at least her maximin share) do not always exist, prior work has focused on approximation results that aim to find allocations in which the value of the bundle allocated to each agent is (multiplicatively) as close to her maximin share as possible. In particular, Procaccia and Wang (2014) along with Amanatidis et al. (2015) have shown that under additive valuations, a 2/3-approximate maximin fair allocation always exists and can be found in polynomial time. We complement these results by developing a simple and efficient algorithm that achieves the same approximation guarantee. Furthermore, we initiate the study of approximate maximin fair division under submodular valuations . Specifically, we show that when the valuations of the agents are nonnegative , monotone , and submodular, then a 0.21-approximate maximin fair allocation is guaranteed to exist. In fact, we show that such an allocation can be efficiently found by using a simple round-robin algorithm. A technical contribution of the article is to analyze the performance of this combinatorial algorithm by employing the concept of multilinear extensions .
The goal of division is to distribute resources among competing players in a fair way. Envy-freeness is the most extensively studied fairness notion in division. Envy-free allocations do not always … The goal of division is to distribute resources among competing players in a fair way. Envy-freeness is the most extensively studied fairness notion in division. Envy-free allocations do not always exist with indivisible goods, motivating the study of relaxed versions of envy-freeness. We study the envy-freeness up to any good (EFX) property, which states that no player prefers the bundle of another player following the removal of any single good, and prove the first general results about this property. We use the leximin solution to show existence of EFX allocations in several contexts, sometimes in conjunction with Pareto optimality. For two players with valuations obeying a mild assumption, one of these results provides stronger guarantees than the currently deployed algorithm on Spliddit, a popular division website. Unfortunately, finding the leximin solution can require exponential time. We show that this is necessary by proving an exponential lower bound on the number of value queries needed to identify an EFX allocation, even for two players with identical valuations. We consider both additive and more general valuations, and our work suggests that there is a rich landscape of problems to explore in the division of indivisible goods with different classes of player valuations.
We consider a multi-agent model for fair division of mixed manna (i.e. items for which agents can have positive, zero or negative utilities), in which agents have additive utilities for … We consider a multi-agent model for fair division of mixed manna (i.e. items for which agents can have positive, zero or negative utilities), in which agents have additive utilities for bundles of items. For this model, we give several general impossibility results and special possibility results for three common fairness concepts (i.e. EF1, EFX, EFX3) and one popular efficiency concept (i.e. PO). We also study how these interact with common welfare objectives such as the Nash, disutility Nash and egalitarian welfares. For example, we show that maximizing the Nash welfare with mixed manna (or minimizing the disutility Nash welfare) does not ensure an EF1 allocation whereas with goods and the Nash welfare it does. We also prove that an EFX3 allocation may not exist even with identical utilities. By comparison, with tertiary utilities, EFX and PO allocations, or EFX3 and PO allocations always exist. Also, with identical utilities, EFX and PO allocations always exist. For these cases, we give polynomial-time algorithms, returning such allocations and approximating further the Nash, disutility Nash and egalitarian welfares in special cases.
Several relaxations of envy-freeness, tailored to fair division in settings with indivisible goods, have been introduced within the last decade. Due to the lack of general existence results for most … Several relaxations of envy-freeness, tailored to fair division in settings with indivisible goods, have been introduced within the last decade. Due to the lack of general existence results for most of these concepts, great attention has been paid to establishing approximation guarantees. In this work, we propose a simple algorithm that is universally fair in the sense that it returns allocations that have good approximation guarantees with respect to four such fairness notions at once. In particular, this is the first algorithm achieving a (φ−1)-approximation of envy-freeness up to any good (EFX) and a 2/φ+2 -approximation of groupwise maximin share fairness (GMMS), where φ is the golden ratio. The best known approximation factor, in polynomial time, for either one of these fairness notions prior to this work was 1/2. Moreover, the returned allocation achieves envy-freeness up to one good (EF1) and a 2/3-approximation of pairwise maximin share fairness (PMMS). While EFX is our primary focus, we also exhibit how to fine-tune our algorithm and improve further the guarantees for GMMS or PMMS.Finally, we show that GMMS—and thus PMMS and EFX—allocations always exist when the number of goods does not exceed the number of agents by more than two.
We study the problem of fair allocation of m indivisible items among n agents with additive valuations using the popular notion of maximin share (MMS) as our measure of fairness. … We study the problem of fair allocation of m indivisible items among n agents with additive valuations using the popular notion of maximin share (MMS) as our measure of fairness. An MMS allocation provides each agent a bundle worth at least her maximin share. While it is known that such an allocation need not exist [5, 7], a series of remarkable work [1-3, 6, 7] provided 2/3 approximation algorithms in which each agent receives a bundle worth at least 2/3 times her maximin share. More recently, [4] showed the existence of 3/4 MMS allocations and a PTAS to find a 3/4 - ε MMS allocation. Most of the previous works utilize intricate algorithms and require agents' approximate MMS values, which are computationally expensive to obtain.
The goal of fair division is to distribute resources among competing players in a “fair” way. Envy-freeness is the most extensively studied fairness notion in fair division. Envy-free allocations do … The goal of fair division is to distribute resources among competing players in a “fair” way. Envy-freeness is the most extensively studied fairness notion in fair division. Envy-free allocations do not always exist with indivisible goods, motivating the study of relaxed versions of envy-freeness. We study the envy-freeness up to any good (EFX) property, which states that no player prefers the bundle of another player following the removal of any single good, and prove the first general results about this property. We use the leximin solution to show existence of EFX allocations in several contexts, sometimes in conjunction with Pareto optimality. For two players with valuations obeying a mild assumption, one of these results provides stronger guarantees than the currently deployed algorithm on Spliddit, a popular fair division website. Unfortunately, finding the leximin solution can require exponential time. We show that this is necessary by proving an exponential lower bound on the number of value queries needed to identify an EFX allocation, even for two players with identical valuations. We consider both additive and more general valuations, and our work suggests that there is a rich landscape of problems to explore in the fair division of indivisible goods with different classes of player valuations.
Quantization has been an effective technology in ANN (approximate nearest neighbour) search due to its high accuracy and fast search speed. To meet the requirement of different applications, there is … Quantization has been an effective technology in ANN (approximate nearest neighbour) search due to its high accuracy and fast search speed. To meet the requirement of different applications, there is always a trade-off between retrieval accuracy and speed, reflected by variable code lengths. However, to encode the dataset into different code lengths, existing methods need to train several models, where each model can only produce a specific code length. This incurs a considerable training time cost, and largely reduces the flexibility of quantization methods to be deployed in real applications. To address this issue, we propose a Deep Recurrent Quantization (DRQ) architecture which can generate sequential binary codes. To the end, when the model is trained, a sequence of binary codes can be generated and the code length can be easily controlled by adjusting the number of recurrent iterations. A shared codebook and a scalar factor is designed to be the learnable weights in the deep recurrent quantization block, and the whole framework can be trained in an end-to-end manner. As far as we know, this is the first quantization method that can be trained once and generate sequential binary codes. Experimental results on the benchmark datasets show that our model achieves comparable or even better performance compared with the state-of-the-art for image retrieval. But it requires significantly less number of parameters and training times. Our code is published online: https://github.com/cfm-uestc/DRQ.
We study the problem of computing maximin share guarantees, a recently introduced fairness notion. Given a set of $n$ agents and a set of goods, the maximin share of a … We study the problem of computing maximin share guarantees, a recently introduced fairness notion. Given a set of $n$ agents and a set of goods, the maximin share of a single agent is the best that she can guarantee to herself, if she would be allowed to partition the goods in any way she prefers, into $n$ bundles, and then receive her least desirable bundle. The objective then in our problem is to find a partition, so that each agent is guaranteed her maximin share. In settings with indivisible goods, such allocations are not guaranteed to exist, so we resort to approximation algorithms. Our main result is a $2/3$-approximation, that runs in polynomial time for any number of agents. This improves upon the algorithm of Procaccia and Wang, which also produces a $2/3$-approximation but runs in polynomial time only for a constant number of agents. To achieve this, we redesign certain parts of their algorithm. Furthermore, motivated by the apparent difficulty, both theoretically and experimentally, in finding lower bounds on the existence of approximate solutions, we undertake a probabilistic analysis. We prove that in randomly generated instances, with high probability there exists a maximin share allocation. This can be seen as a justification of the experimental evidence reported in relevant works. Finally, we provide further positive results for two special cases that arise from previous works. The first one is the intriguing case of $3$ agents, for which it is already known that exact maximin share allocations do not always exist (contrary to the case of $2$ agents). We provide a $7/8$-approximation algorithm, improving the previously known result of $3/4$. The second case is when all item values belong to $\{0, 1, 2\}$, extending the $\{0, 1\}$ setting studied in Bouveret and Lema\^itre. We obtain an exact algorithm for any number of agents in this case.
We study the mechanism design problem of allocating a set of indivisible items without monetary transfers. Despite the vast literature on this very standard model, it still remains unclear how … We study the mechanism design problem of allocating a set of indivisible items without monetary transfers. Despite the vast literature on this very standard model, it still remains unclear how do truthful mechanisms look like. We focus on the case of two players with additive valuation functions and our purpose is twofold. First, our main result provides a complete characterization of truthful mechanisms that allocate all the items to the players. Our characterization reveals an interesting structure underlying all truthful mechanisms, showing that they can be decomposed into two components: a selection part where players pick their best subset among prespecified choices determined by the mechanism, and an exchange part where players are offered the chance to exchange certain subsets if it is favorable to do so. In the remaining paper, we apply our main result and derive several consequences on the design of mechanisms with fairness guarantees. We consider various notions of fairness, (indicatively, maximin share guarantees and envy-freeness up to one item) and provide tight bounds for their approximability. Our work settles some of the open problems in this agenda, and we conclude by discussing possible extensions to more players.
We study a fair division problem with indivisible items, namely the computation of maximin share allocations. Given a set of $n$ players, the maximin share of a single player is … We study a fair division problem with indivisible items, namely the computation of maximin share allocations. Given a set of $n$ players, the maximin share of a single player is the best she can guarantee to herself, if she would partition the items in any way she prefers, into $n$ bundles, and then receive her least desirable bundle. The objective then is to find an allocation, so that each player is guaranteed her maximin share. Previous works have studied this problem mostly algorithmically, providing constant factor approximation algorithms. In this work we embark on a mechanism design approach and investigate the existence of truthful mechanisms. We propose three models regarding the information that the mechanism attempts to elicit from the players, based on the cardinal and ordinal representation of preferences. We establish positive and negative (impossibility) results for each model and highlight the limitations imposed by truthfulness on the approximability of the problem. Finally, we pay particular attention to the case of two players, which already leads to challenging questions.
We consider the problem of dividing indivisible goods fairly among n agents who have additive and submodular valuations for the goods. Our fairness guarantees are in terms of the maximin … We consider the problem of dividing indivisible goods fairly among n agents who have additive and submodular valuations for the goods. Our fairness guarantees are in terms of the maximin share, that is defined to be the maximum value that an agent can ensure for herself, if she were to partition the goods into n bundles, and then receive a minimum valued bundle. Since maximin fair allocations (i.e., allocations in which each agent gets at least her maximin share) do not always exist, prior work has focussed on approximation results that aim to find allocations in which the value of the bundle allocated to each agent is (multiplicatively) as close to her maximin share as possible. In particular, Procaccia and Wang (2014) along with Amanatidis et al. (2015) have shown that under additive valuations a 2/3-approximate maximin fair allocation always exists and can be found in polynomial time. We complement these results by developing a simple and efficient algorithm that achieves the same approximation guarantee.
We study the mechanism design problem of allocating a set of indivisible items without monetary transfers. Despite the vast literature on this very standard model, it still remains unclear how … We study the mechanism design problem of allocating a set of indivisible items without monetary transfers. Despite the vast literature on this very standard model, it still remains unclear how do truthful mechanisms look like. We focus on the case of two players with additive valuation functions and our purpose is twofold. First, our main result provides a complete characterization of truthful mechanisms that allocate all the items to the players. Our characterization reveals an interesting structure underlying all truthful mechanisms, showing that they can be decomposed into two components: a selection part where players pick their best subset among prespecified choices determined by the mechanism, and an exchange part where players are offered the chance to exchange certain subsets if it is favorable to do so. In the remaining paper, we apply our main result and derive several consequences on the design of mechanisms with fairness guarantees. We consider various notions of fairness, (indicatively, maximin share guarantees and envy-freeness up to one item) and provide tight bounds for their approximability. Our work settles some of the open problems in this agenda, and we conclude by discussing possible extensions to more players.
In fair division problems with indivisible goods it is well known that one cannot have any guarantees for the classic fairness notions of envy-freeness and proportionality. As a result, several … In fair division problems with indivisible goods it is well known that one cannot have any guarantees for the classic fairness notions of envy-freeness and proportionality. As a result, several relaxations have been introduced, most of which in quite recent works. We focus on four such notions, namely envy-freeness up to one good (EF1), envy-freeness up to any good (EFX), maximin share fairness (MMS), and pairwise maximin share fairness (PMMS). Since obtaining these relaxations also turns out to be problematic in several scenarios, approximate versions of them have been considered. In this work, we investigate further the connections between the four notions mentioned above and their approximate versions. We establish several tight, or almost tight, results concerning the approximation quality that any of these notions guarantees for the others, providing an almost complete picture of this landscape. Some of our findings reveal interesting and surprising consequences regarding the power of these notions, e.g., PMMS and EFX provide the same worst-case guarantee for MMS, despite PMMS being a strictly stronger notion than EFX. We believe such implications provide further insight on the quality of approximately fair solutions.
Several fairness concepts have been proposed recently in attempts to approximate envy-freeness in settings with indivisible goods. Among them, the concept of envy-freeness up to any item (EFX) is arguably … Several fairness concepts have been proposed recently in attempts to approximate envy-freeness in settings with indivisible goods. Among them, the concept of envy-freeness up to any item (EFX) is arguably the closest to envy-freeness. Unfortunately, EFX allocations are not known to exist except in a few special cases. We make significant progress in this direction. We show that for every instance with additive valuations, there is an EFX allocation of a subset of items with a Nash welfare that is at least half of the maximum possible Nash welfare for the original set of items. That is, after donating some items to a charity, one can distribute the remaining items in a fair way with high efficiency. This bound is proved to be best possible. Our proof is constructive and highlights the importance of maximum Nash welfare allocation. Starting with such an allocation, our algorithm decides which items to donate and redistributes the initial bundles to the agents, eventually obtaining an allocation with the claimed efficiency guarantee. The application of our algorithm to large markets, where the valuations of an agent for every item is relatively small, yields EFX with almost optimal Nash welfare. To the best of our knowledge, this is the first use of large market assumptions in the fair division literature. We also show that our algorithm can be modified to compute, in polynomial-time, EFX allocations that approximate optimal Nash welfare within a factor of at most $2\rho$, using a $\rho$-approximate allocation on input instead of the maximum Nash welfare one.