Nikola B. Kovachki

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat A Library for Learning Neural Operators 2024 Jean Kossaifi
Nikola B. Kovachki
Zongyi Li
David Pitt
Miguel Liu-Schiaffini
Robert Joseph George
Boris Bonev
Kamyar Azizzadenesheli
Julius Berner
Anima Anandkumar
+ PDF Chat Warped Diffusion: Solving Video Inverse Problems with Image Diffusion Models 2024 Giannis Daras
Weili Nie
Karsten Kreis
Alex Dimakis
Morteza Mardani
Nikola B. Kovachki
Arash Vahdat
+ PDF Chat Ensemble Kalman Diffusion Guidance: A Derivative-free Method for Inverse Problems 2024 Hongkai Zheng
Wenda Chu
A L Wang
Nikola B. Kovachki
R. Baptista
Yisong Yue
+ An approximation theory framework for measure-transport sampling algorithms 2024 Ricardo Baptista
Bamdad Hosseini
Nikola B. Kovachki
Youssef Marzouk
Amir Sagiv
+ PDF Chat Conditional Sampling with Monotone GANs: From Generative Models to Likelihood-Free Inference 2024 Ricardo Baptista
Bamdad Hosseini
Nikola B. Kovachki
Youssef Marzouk
+ PDF Chat Learning Homogenization for Elliptic Operators 2024 Kaushik Bhattacharya
Nikola B. Kovachki
Aakila Rajan
Andrew M. Stuart
Margaret Trautner
+ PDF Chat Continuum Attention for Neural Operators 2024 Edoardo Calvello
Nikola B. Kovachki
Matthew E. Levine
Andrew M. Stuart
+ PDF Chat Data Complexity Estimates for Operator Learning 2024 Nikola B. Kovachki
Samuel Lanthaler
H. N. Mhaskar
+ PDF Chat Operator Learning: Algorithms and Analysis 2024 Nikola B. Kovachki
Samuel Lanthaler
Andrew M. Stuart
+ PDF Chat Physics-Informed Neural Operator for Learning Partial Differential Equations 2024 Zongyi Li
Hongkai Zheng
Nikola B. Kovachki
David Jin
Haoxuan Chen
Burigede Liu
Kamyar Azizzadenesheli
Anima Anandkumar
+ PDF Chat Convergence Rates for Learning Linear Operators from Noisy Data 2023 Maarten V. de Hoop
Nikola B. Kovachki
Nicholas H. Nelsen
Andrew M. Stuart
+ Score-based Diffusion Models in Function Space 2023 Jae Hyun Lim
Nikola B. Kovachki
R. Baptista
Christopher Beckham
Kamyar Azizzadenesheli
Jean Kossaifi
Vikram Voleti
Jiaming Song
Karsten Kreis
Jan Kautz
+ An Approximation Theory Framework for Measure-Transport Sampling Algorithms 2023 R. Baptista
Bamdad Hosseini
Nikola B. Kovachki
Youssef Marzouk
Amir Sagiv
+ Learning Homogenization for Elliptic Operators 2023 Kaushik Bhattacharya
Nikola B. Kovachki
Aakila Rajan
Andrew M. Stuart
Margaret Trautner
+ Tipping Point Forecasting in Non-Stationary Dynamics on Function Spaces 2023 Miguel Liu-Schiaffini
Clare E. Singer
Nikola B. Kovachki
Tapio Schneider
Kamyar Azizzadenesheli
Anima Anandkumar
+ Geometry-Informed Neural Operator for Large-Scale 3D PDEs 2023 Zongyi Li
Nikola B. Kovachki
Chris Choy
Boyi Li
Jean Kossaifi
Shourya Prakash Otta
Mohammad Amin Nabian
Maximilian Stadler
Christian Hundt
Kamyar Azizzadenesheli
+ Neural Operators for Accelerating Scientific Simulations and Design 2023 Kamyar Azzizadenesheli
Nikola B. Kovachki
Zongyi Li
Miguel Liu-Schiaffini
Jean Kossaifi
Anima Anandkumar
+ Multi-Grid Tensorized Fourier Neural Operator for High-Resolution PDEs 2023 Jean Kossaifi
Nikola B. Kovachki
Kamyar Azizzadenesheli
Anima Anandkumar
+ PDF Chat Multiscale modeling of materials: Computing, data science, uncertainty and goal-oriented optimization 2021 Nikola B. Kovachki
Burigede Liu
Xingsheng Sun
Hao Zhou
Kaushik Bhattacharya
M. Ortíz
Andrew M. Stuart
+ PDF Chat A learning-based multiscale method and its application to inelastic impact problems 2021 Burigede Liu
Nikola B. Kovachki
Zongyi Li
Kamyar Azizzadenesheli
Anima Anandkumar
Andrew M. Stuart
Kaushik Bhattacharya
+ PDF Chat Convergence Rates for Learning Linear Operators from Noisy Data 2021 Maarten V. de Hoop
Nikola B. Kovachki
Nicholas H. Nelsen
Andrew M. Stuart
+ Neural Operator: Learning Maps Between Function Spaces. 2021 Nikola B. Kovachki
Zongyi Li
Burigede Liu
Kamyar Azizzadenesheli
Kaushik Bhattacharya
Andrew M. Stuart
Anima Anandkumar
+ On universal approximation and error bounds for Fourier Neural Operators 2021 Nikola B. Kovachki
Samuel Lanthaler
Siddhartha Mishra
+ PDF Chat Model Reduction And Neural Networks For Parametric PDEs 2021 Kaushik Bhattacharya
Bamdad Hosseini
Nikola B. Kovachki
Andrew M. Stuart
+ Markov Neural Operators for Learning Chaotic Systems. 2021 Zongyi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
Kaushik Bhattacharya
Andrew M. Stuart
Anima Anandkumar
+ Multiscale modeling of materials: Computing, data science,uncertainty and goal-oriented optimization 2021 Nikola B. Kovachki
Burigede Liu
Xingsheng Sun
Hao Zhou
Kaushik Bhattacharya
M. Ortíz
Andrew M. Stuart
+ A learning-based multiscale method and its application to inelastic impact problems 2021 Burigede Liu
Nikola B. Kovachki
Zongyi Li
Kamyar Azizzadenesheli
Anima Anandkumar
Andrew M. Stuart
Kaushik Bhattacharya
+ Physics-Informed Neural Operator for Learning Partial Differential Equations 2021 Zongyi Li
Hongkai Zheng
Nikola B. Kovachki
David Jin
Haoxuan Chen
Burigede Liu
Kamyar Azizzadenesheli
Anima Anandkumar
+ On Universal Approximation and Error Bounds for Fourier Neural Operators 2021 Nikola B. Kovachki
Samuel Lanthaler
Siddhartha Mishra
+ Convergence Rates for Learning Linear Operators from Noisy Data 2021 Maarten V. de Hoop
Nikola B. Kovachki
Nicholas H. Nelsen
Andrew M. Stuart
+ Neural Operator: Learning Maps Between Function Spaces 2021 Nikola B. Kovachki
Zongyi Li
Burigede Liu
Kamyar Azizzadenesheli
Kaushik Bhattacharya
Andrew M. Stuart
Anima Anandkumar
+ On universal approximation and error bounds for Fourier Neural Operators 2021 Nikola B. Kovachki
Samuel Lanthaler
Siddhartha Mishra
+ Multiscale modeling of materials: Computing, data science,uncertainty and goal-oriented optimization 2021 Nikola B. Kovachki
Burigede Liu
Xingsheng Sun
Hao Zhou
Kaushik Bhattacharya
M. Ortíz
Andrew M. Stuart
+ Learning Dissipative Dynamics in Chaotic Systems 2021 Zongyi Li
Miguel Liu-Schiaffini
Nikola B. Kovachki
Burigede Liu
Kamyar Azizzadenesheli
Kaushik Bhattacharya
Andrew M. Stuart
Anima Anandkumar
+ Conditional Sampling With Monotone GANs. 2020 Nikola B. Kovachki
Ricardo Baptista
Bamdad Hosseini
Youssef Marzouk
+ Model Reduction and Neural Networks for Parametric PDEs 2020 Kaushik Bhattacharya
Bamdad Hosseini
Nikola B. Kovachki
Andrew M. Stuart
+ Neural Operator: Graph Kernel Network for Partial Differential Equations 2020 Zongyi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
Kaushik Bhattacharya
Andrew M. Stuart
Anima Anandkumar
+ Neural Operator: Graph Kernel Network for Partial Differential Equations 2020 Zongyi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
Kaushik Bhattacharya
Andrew M. Stuart
Anima Anandkumar
+ Multipole Graph Neural Operator for Parametric Partial Differential Equations 2020 Zongyi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
Kaushik Bhattacharya
Andrew M. Stuart
Anima Anandkumar
+ Fourier Neural Operator for Parametric Partial Differential Equations 2020 Zongyi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
Kaushik Bhattacharya
Andrew M. Stuart
Anima Anandkumar
+ Model Reduction and Neural Networks for Parametric PDEs 2020 Kaushik Bhattacharya
Bamdad Hosseini
Nikola B. Kovachki
Andrew M. Stuart
+ Conditional Sampling with Monotone GANs: from Generative Models to Likelihood-Free Inference 2020 R. Baptista
Bamdad Hosseini
Nikola B. Kovachki
Youssef Marzouk
+ PDF Chat Regression Clustering for Improved Accuracy and Training Costs with Molecular-Orbital-Based Machine Learning 2019 Lixue Cheng
Nikola B. Kovachki
Matthew Welborn
Thomas F. Miller
+ Analysis Of Momentum Methods 2019 Nikola B. Kovachki
Andrew M. Stuart
+ PDF Chat Ensemble Kalman inversion: a derivative-free technique for machine learning tasks 2019 Nikola B. Kovachki
Andrew M. Stuart
+ Regression-clustering for Improved Accuracy and Training Cost with Molecular-Orbital-Based Machine Learning 2019 Lixue Cheng
Nikola B. Kovachki
Matthew Welborn
Thomas F. Miller
+ Continuous Time Analysis of Momentum Methods 2019 Nikola B. Kovachki
Andrew M. Stuart
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems 2018 E Weinan
Bing Yu
9
+ Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators 2021 Lu Lu
Pengzhan Jin
Guofei Pang
Zhongqiang Zhang
George Em Karniadakis
8
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
8
+ PDF Chat Model Reduction And Neural Networks For Parametric PDEs 2021 Kaushik Bhattacharya
Bamdad Hosseini
Nikola B. Kovachki
Andrew M. Stuart
7
+ MCMC Methods for Functions: Modifying Old Algorithms to Make Them Faster 2013 Simon L. Cotter
Gareth O. Roberts
Andrew M. Stuart
David White
6
+ PDF Chat Prediction of aerodynamic flow fields using convolutional neural networks 2019 Saakaar Bhatnagar
Yaser Afshar
Shaowu Pan
Karthik Duraisamy
Shailendra Kaushik
6
+ PDF Chat Solving ill-posed inverse problems using iterative deep neural networks 2017 Jonas Adler
Ozan Öktem
6
+ PDF Chat Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantification 2018 Yinhao Zhu
Nicholas Zabaras
6
+ Model Reduction and Neural Networks for Parametric PDEs 2020 Kaushik Bhattacharya
Bamdad Hosseini
Nikola B. Kovachki
Andrew M. Stuart
6
+ PDF Chat Inverse problems: A Bayesian perspective 2010 Andrew M. Stuart
5
+ Neural Message Passing for Quantum Chemistry 2017 Justin Gilmer
Samuel S. Schoenholz
Patrick Riley
Oriol Vinyals
George E. Dahl
5
+ PDF Chat Approximation of high-dimensional parametric PDEs 2015 Albert Cohen
Ronald DeVore
5
+ Neural Operator: Graph Kernel Network for Partial Differential Equations 2020 Zongyi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
Kaushik Bhattacharya
Andrew M. Stuart
Anima Anandkumar
5
+ Self-Normalizing Neural Networks 2017 Günter Klambauer
Thomas Unterthiner
Andreas Mayr
Sepp Hochreiter
5
+ PDF Chat A physics-informed operator regression framework for extracting data-driven continuum models 2020 Ravi G. Patel
Nathaniel Trask
Mitchell Wood
Eric C. Cyr
5
+ PDF Chat Hierarchical multiscale quantification of material uncertainty 2021 Burigede Liu
Xingsheng Sun
Kaushik Bhattacharya
M. Ortíz
4
+ Unsupervised Deep Learning Algorithm for PDE-based Forward and Inverse Problems 2019 Leah Bar
Nir Sochen
4
+ PDF Chat Hybrid neural network potential for multilayer graphene 2019 Mingjian Wen
Ellad B. Tadmor
4
+ PDF Chat Solving parametric PDE problems with artificial neural networks 2020 Yuehaw Khoo
Jianfeng Lu
Lexing Ying
4
+ The Random Feature Model for Input-Output Maps between Banach Spaces 2020 Nicholas H. Nelsen
Andrew M. Stuart
4
+ PDF Chat A deep material network for multiscale topology learning and accelerated nonlinear modeling of heterogeneous materials 2018 Zeliang Liu
Cheng Wu
M. Koishi
4
+ Fourier Neural Operator for Parametric Partial Differential Equations 2020 Zongyi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
Kaushik Bhattacharya
Andrew M. Stuart
Anima Anandkumar
4
+ Towards Physics-informed Deep Learning for Turbulent Flow Prediction 2020 Rui Wang
Karthik Kashinath
Mustafa Mustafa
Adrian Albert
Rose Yu
4
+ EikoNet: Solving the Eikonal equation with Deep Neural Networks 2020 Jonathan Smith
Kamyar Azizzadenesheli
Zachary E. Ross
4
+ PDF Chat The Random Feature Model for Input-Output Maps between Banach Spaces 2021 Nicholas H. Nelsen
Andrew M. Stuart
3
+ PDF Chat Error bounds for approximations with deep ReLU networks 2017 Dmitry Yarotsky
3
+ Semi-Supervised Classification with Graph Convolutional Networks 2016 Thomas Kipf
Max Welling
3
+ PDF Chat A learning-based multiscale method and its application to inelastic impact problems 2021 Burigede Liu
Nikola B. Kovachki
Zongyi Li
Kamyar Azizzadenesheli
Anima Anandkumar
Andrew M. Stuart
Kaushik Bhattacharya
3
+ A differential equation for modeling Nesterov's accelerated gradient method: theory and insights 2016 Weijie Su
Stephen Boyd
Emmanuel J. Candès
3
+ Reduced Basis Methods for Partial Differential Equations: An Introduction 2015 Alfio Quarteroni
Andrea Manzoni
Federico Negri
3
+ PDF Chat Operator learning for predicting multiscale bubble growth dynamics 2021 Chensen Lin
Zhen Li
Lu Lu
Shengze Cai
Martin Maxey
George Em Karniadakis
3
+ DeepM&Mnet for hypersonics: Predicting the coupled flow and finite-rate chemistry behind a normal shock using neural-network approximation of operators 2020 Zhiping Mao
Lu Lu
Olaf Marxen
Tamer A. Zaki
George Em Karniadakis
3
+ PDF Chat Transport Map Accelerated Markov Chain Monte Carlo 2018 Matthew Parno
Youssef Marzouk
3
+ PDF Chat DeepM&Mnet: Inferring the electroconvection multiphysics fields based on operator approximation by neural networks 2021 Shengze Cai
Zhicheng Wang
Lu Lu
Tamer A. Zaki
George Em Karniadakis
3
+ PDF Chat ANALYTIC REGULARITY AND POLYNOMIAL APPROXIMATION OF PARAMETRIC AND STOCHASTIC ELLIPTIC PDE'S 2011 Albert Cohen
Ronald DeVore
Christoph Schwab
3
+ PDF Chat Stable architectures for deep neural networks 2017 Eldad Haber
Lars Ruthotto
3
+ PDF Chat Normalizing Flows: An Introduction and Review of Current Methods 2020 Ivan Kobyzev
Simon J. D. Prince
Marcus A. Brubaker
3
+ Adam: A Method for Stochastic Optimization 2014 Diederik P. Kingma
Jimmy Ba
3
+ MeshfreeFlowNet: A Physics-Constrained Deep Continuous Space-Time Super-Resolution Framework 2020 Chiyu Max Jiang
Soheil Esmaeilzadeh
Kamyar Azizzadenesheli
Karthik Kashinath
Mustafa Mustafa
Hamdi A. Tchelepi
Philip Marcus
Prabhat
Anima Anandkumar
3
+ Learning to Optimize Multigrid PDE Solvers 2019 Daniel Greenfeld
Meirav Galun
Ronen Basri
Irad Yavneh
Ron Kimmel
3
+ Janossy Pooling: Learning Deep Permutation-Invariant Functions for Variable-Size Inputs 2018 Ryan L. Murphy
Balasubramaniam Srinivasan
Vinayak Rao
Bruno Ribeiro
3
+ Relational inductive biases, deep learning, and graph networks 2018 Peter Battaglia
Jessica B. Hamrick
Victor Bapst
Álvaro Sánchez‐González
Vinícius Zambaldi
Mateusz Malinowski
Andrea Tacchetti
David Raposo
Adam Santoro
Ryan Faulkner
3
+ PDF Chat Coupling Techniques for Nonlinear Ensemble Filtering 2022 Alessio Spantini
Ricardo Baptista
Youssef Marzouk
3
+ PDF Chat Well-posed Bayesian geometric inverse problems arising in subsurface flow 2014 Marco Iglesias
Kui Lin
Andrew M. Stuart
3
+ The Marginal Value of Adaptive Gradient Methods in Machine Learning 2017 Ashia C. Wilson
Rebecca Roelofs
Mitchell Stern
Nathan Srebro
Benjamin Recht
3
+ PDF Chat Bayesian inference with optimal maps 2012 Tarek Moselhy
Youssef Marzouk
3
+ Graph Attention Networks 2017 Petar Veličković
Guillem Cucurull
Arantxa Casanova
Adriana Romero
Píetro Lió
Yoshua Bengio
3
+ Sampling via Measure Transport: An Introduction 2016 Youssef Marzouk
Tarek Moselhy
Matthew Parno
Alessio Spantini
3
+ An FFT-based Galerkin method for homogenization of periodic media 2014 Jaroslav Vondřejc
Jan Zeman
Ivo Marek
2
+ PDF Chat Quantum-chemical insights from deep tensor neural networks 2017 Kristof T. Schütt
Farhad Arbabzadah
Stefan Chmiela
K. Müller
Alexandre Tkatchenko
2