Daniel Bartz

Follow

Generating author description...

Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Regularized Discriminant Analysis 1989 Jerome H. Friedman
3
+ PDF Chat A well-conditioned estimator for large-dimensional covariance matrices 2003 Olivier Ledoit
Michael Wolf
3
+ PDF Chat Spectrum estimation for large dimensional covariance matrices using random matrix theory 2008 Noureddine El Karoui
2
+ EM algorithms for ML factor analysis 1982 Donald B. Rubin
Dorothy T. Thayer
2
+ Weak conditions for shrinking multivariate nonparametric density estimators 2012 Alessio Sancetta
2
+ Extension of the mixture of factor analyzers model to incorporate the multivariate t-distribution 2006 Geoffrey J. McLachlan
Richard Bean
L. Ben-Tovim Jones
2
+ Adapting to Unknown Smoothness via Wavelet Shrinkage 1995 David L. Donoho
Iain M. Johnstone
2
+ PDF Chat Portfolio optimization and the random magnet problem 2002 Bernd Rosenow
Vasiliki Plerou
Parameswaran Gopikrishnan
H. Eugene Stanley
2
+ DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES 1967 V A Marčenko
L. А. Pastur
2
+ PDF Chat Finite sample approximation results for principal component analysis: A matrix perturbation approach 2008 Boaz Nadler
2
+ The Elements of Statistical Learning 2001 Trevor Hastie
J. Friedman
Robert Tibshirani
2
+ Random matrix theory 2005 Alan Edelman
N. Raj Rao
2
+ PDF Chat High dimensional covariance matrix estimation using a factor model 2008 Jianqing Fan
Yingying Fan
Jinchi Lv
2
+ PDF Chat Estimating the Dimension of a Model 1978 Gideon Schwarz
2
+ Maximum Likelihood from Incomplete Data Via the <i>EM</i> Algorithm 1977 A. P. Dempster
N. M. Laird
Donald B. Rubin
2
+ PDF Chat First-Order Methods for Sparse Covariance Selection 2008 Alexandre d’Aspremont
Onureena Banerjee
Laurent El Ghaoui
1
+ PDF Chat Symmetric and Reversed Multiple Stationary Autoregressive Series 1972 Jiƙí Anděl
1
+ PDF Chat Causal Network Inference Via Group Sparse Regularization 2011 Andrew Bolstad
B.D. Van Veen
Robert Nowak
1
+ PDF Chat Estimation of a Covariance Matrix under Stein's Loss 1985 Dipak K. Dey
Cidambi Srinivasan
1
+ Random Matrix Theory and Wireless Communications 2004 Antonia M. Tulino
Sergio VerdĂș
1
+ Schur complements and statistics 1981 Diane Valérie Ouellette
1
+ Adaptive covariance matrix estimation through block thresholding 2012 Tommaso Cai
Ming Yuan
1
+ Factor Analysis and AIC 1987 Hirotugu Akaike
1
+ PDF Chat Kernel Method for Nonlinear Granger Causality 2008 Daniele Marinazzo
M. Pellicoro
Sebastiano Stramaglia
1
+ PDF Chat Robustly Estimating the Flow Direction of Information in Complex Physical Systems 2008 Guido Nolte
Andreas Ziehe
Vadim V. Nikulin
Alois Schlögl
Nicole KrÀmer
Tom Brismar
Klaus‐Robert MĂŒller
1
+ Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation 1991 Donald W. K. Andrews
1
+ Thirteen Ways to Look at the Correlation Coefficient 1988 Joseph Lee Rodgers
W. Alan Nicewander
1
+ PDF Chat Minimax estimation of large covariance matrices under L1-norm 2011 Tommaso Cai
Harrison H. Zhou
1
+ PDF Chat Optimal Estimation of a Large-Dimensional Covariance Matrix Under Stein's Loss 2013 Olivier Ledoit
Michael Wolf
1
+ Generalizing Analytic Shrinkage for Arbitrary Covariance Structures 2013 Daniel Bartz
Klaus‐Robert MĂŒller
1
+ PDF Chat Shrinkage Algorithms for MMSE Covariance Estimation 2010 Yilun Chen
Ami Wiesel
Yonina C. Eldar
Alfred O. Hero
1
+ PDF Chat Modeling Sparse Connectivity Between Underlying Brain Sources for EEG/MEG 2010 Stefan Haufe
Ryota Tomioka
Guido Nolte
Klaus‐Robert MĂŒller
Motoaki Kawanabe
1
+ Kernel Mean Estimation via Spectral Filtering 2014 Krikamol Muandet
Bharath K. Sriperumbudur
Bernhard Schölkopf
1
+ Sparse inverse covariance estimation with the graphical lasso 2007 Jerome H. Friedman
Trevor Hastie
R. Tibshirani
1
+ Causal Inference on Time Series using Restricted Structural Equation Models 2013 Jonas Peters
Dominik Janzing
Bernhard Schölkopf
1
+ PDF Chat Multi-column deep neural networks for image classification 2012 Dan CireƟan
Ueli Meier
JĂŒrgen Schmidhuber
1
+ Principal Component Analysis 1988 Colin Goodall
Ian T. Jolliffe
1
+ PDF Chat No free lunch theorems for optimization 1997 David H. Wolpert
William G. Macready
1
+ PDF Chat Mitigating the effects of measurement noise on Granger causality 2007 Hariharan Nalatore
Mingzhou Ding
Govindan Rangarajan
1
+ PDF Chat Regression Towards Mediocrity in Hereditary Stature. 1886 Francis Galton
1
+ Nonlinear shrinkage estimation of large-dimensional covariance matrices 2012 Olivier Ledoit
Michael Wolf
1
+ PDF Chat Optimal rates of convergence for covariance matrix estimation 2010 Tommaso Cai
Cun-Hui Zhang
Harrison H. Zhou
1
+ PDF Chat Sparsistency and rates of convergence in large covariance matrix estimation 2009 Clifford Lam
Jianqing Fan
1
+ Optimal rates of convergence for sparse covariance matrix estimation 2012 Tommaso Cai
Harrison H. Zhou
1
+ Principal Component Analysis 2005 Ian T. Jolliffe
1
+ Covariance regularization by thresholding 2008 Peter J. Bickel
Elizaveta Levina
1
+ PDF Chat Regularized estimation of large covariance matrices 2008 Peter J. Bickel
Elizaveta Levina
1
+ PDF Chat Operator norm consistent estimation of large-dimensional sparse covariance matrices 2008 Noureddine El Karoui
1
+ PDF Chat Sparse permutation invariant covariance estimation 2008 Adam Rothman
Peter J. Bickel
Elizaveta Levina
Ji Zhu
1
+ PDF Chat Eigenvectors of some large sample covariance matrix ensembles 2010 Olivier Ledoit
Sandrine Péché
1