Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Sébastien Bompas
Follow
Share
Generating author description...
All published works
Action
Title
Year
Authors
+
Efficient surrogate models for materials science simulations: Machine learning-based prediction of microstructure properties
2024
Binh Duong Nguyen
Pavlo Potapenko
Aytekin Demirci
Kishan Govind
Sébastien Bompas
Stefan Sandfeld
+
PDF
Chat
Accuracy of neural networks for the simulation of chaotic dynamics: Precision of training data vs precision of the algorithm
2020
Sébastien Bompas
Bertrand Georgeot
D. Guéry-Odelin
Common Coauthors
Coauthor
Papers Together
Aytekin Demirci
1
Stefan Sandfeld
1
Bertrand Georgeot
1
Binh Duong Nguyen
1
Kishan Govind
1
Pavlo Potapenko
1
D. Guéry-Odelin
1
Commonly Cited References
Action
Title
Year
Authors
# of times referenced
+
PDF
Chat
LSTM: A Search Space Odyssey
2016
Klaus Greff
Rupesh K. Srivastava
Jan Koutník
Bas R. Steunebrink
Jürgen Schmidhuber
1
+
Chaos in Dynamical Systems
1992
Daniel Zwillinger
1
+
An equation for continuous chaos
1976
Otto E. Rössler
1
+
Scikit-learn: Machine Learning in Python
2012
Fabián Pedregosa
Gaël Varoquaux
Alexandre Gramfort
Vincent Michel
Bertrand Thirion
Olivier Grisel
Mathieu Blondel
Peter Prettenhofer
Ron J. Weiss
Vincent Dubourg
1
+
PDF
Chat
Deterministic Nonperiodic Flow
1963
Edward N. Lorenz
1
+
PDF
Chat
Deep Residual Learning for Image Recognition
2016
Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
1
+
WaveNet: A Generative Model for Raw Audio
2016
Aäron van den Oord
Sander Dieleman
Heiga Zen
Karen Simonyan
Oriol Vinyals
Alexander Graves
Nal Kalchbrenner
Andrew Senior
Koray Kavukcuoglu
1
+
Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation
2016
Yonghui Wu
Mike Schuster
Zhifeng Chen
Quoc V. Le
Mohammad Norouzi
Wolfgang Macherey
Maxim Krikun
Yuan Cao
Qin Gao
Klaus Macherey
1
+
Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data
2017
Jaideep Pathak
Zhixin Lu
Brian R. Hunt
Michelle Girvan
Edward Ott
1
+
Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations
2018
Maziar Raissi
1
+
An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling
2018
Shaojie Bai
J. Zico Kolter
Vladlen Koltun
1
+
PDF
Chat
Attractor reconstruction by machine learning
2018
Zhixin Lu
Brian R. Hunt
Edward Ott
1
+
PDF
Chat
Data-Driven Microstructure Property Relations
2019
Julian Lißner
Felix Fritzen
1
+
PDF
Chat
Newton versus the machine: solving the chaotic three-body problem using deep neural networks
2020
Philip G. Breen
Christopher N. Foley
Tjarda Boekholt
Simon Portegies Zwart
1
+
PDF
Chat
Backpropagation algorithms and Reservoir Computing in Recurrent Neural Networks for the forecasting of complex spatiotemporal dynamics
2020
Pantelis R. Vlachas
Jay Pathak
Brian R. Hunt
Themistoklis P. Sapsis
Michelle Girvan
Edward Ott
Petros Koumoutsakos
1
+
PDF
Chat
Physics-guided convolutional neural network (PhyCNN) for data-driven seismic response modeling
2020
Ruiyang Zhang
Yang Liu
Hao Sun
1
+
Physics-informed multi-LSTM networks for metamodeling of nonlinear structures
2020
Ruiyang Zhang
Yang Liu
Hao Sun
1
+
PDF
Chat
Comparing different deep learning architectures for classification of chest radiographs
2020
Keno K. Bressem
Lisa C. Adams
Christoph Erxleben
Bernd Hamm
Stefan M. Niehues
Janis L. Vahldiek
1
+
PDF
Chat
Array programming with NumPy
2020
C. R. Harris
K. Jarrod Millman
Stéfan van der Walt
Ralf Gommers
Pauli Virtanen
David Cournapeau
Eric Wieser
Julian Taylor
Sebastian Berg
Nathaniel J. Smith
1
+
PDF
Chat
Data-driven predictions of a multiscale Lorenz 96 chaotic system using machine-learning methods: reservoir computing, artificial neural network, and long short-term memory network
2020
Ashesh Chattopadhyay
Pedram Hassanzadeh
Devika Subramanian
1
+
PDF
Chat
Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks
2018
Pantelis R. Vlachas
Wonmin Byeon
Zhong Wan
Themistoklis P. Sapsis
Petros Koumoutsakos
1
+
Towards advancing the earthquake forecasting by machine learning of satellite data
2021
Pan Xiong
Lei Tong
Kun Zhang
Xuhui Shen
R. Battiston
Dimitar Ouzounov
R. Iuppa
Danny Crookes
Cheng Long
Huiyu Zhou
1
+
Machine learning–accelerated computational fluid dynamics
2021
Dmitrii Kochkov
Jamie Smith
Ayya Alieva
Mengqing Wang
Michael P. Brenner
Stephan Hoyer
1
+
PDF
Chat
Data-driven prediction of a multi-scale Lorenz 96 chaotic system using deep learning methods: Reservoir computing, ANN, and RNN-LSTM
2019
Ashesh Chattopadhyay
Pedram Hassanzadeh
Devika Subramanian
1
+
PDF
Chat
A physics-informed deep neural network for surrogate modeling in classical elasto-plasticity
2023
Mahdad Eghbalian
Mehdi Pouragha
Richard Wan
1
+
PDF
Chat
Challenges and Opportunities for Machine Learning in Multiscale Computational Modeling
2023
Phong Nguyen
Joseph B. Choi
H. S. Udaykumar
Stephen Baek
1
+
PDF
Chat
Data‐driven decision‐focused surrogate modeling
2024
Rishabh Gupta
Qi Zhang
1