Author Description

Login to generate an author description

Ask a Question About This Mathematician

For a ring R with an automorphism α a 4-additive mapping D : R4−→ R is called a skew 4-derivation w.r.t. α if it is a α-derivation of R for … For a ring R with an automorphism α a 4-additive mapping D : R4−→ R is called a skew 4-derivation w.r.t. α if it is a α-derivation of R for each argument. Namely it is always an α-derivation of R for the argument being left once (3) arguments are fixed by (3) elements in R. In the present note, begin with a result of Jung and Park [5], we prove that if a skew 4-derivation D associated with an automorphism α with trace f of a noncommutative prime ring R under suitable torsion condition satisfying [f(x),α(x)] = 0 for all x ∈ I, a nonzero ideal of R, then D = 0.
Let R be a 2-torsion free ring and L a Lie ideal of R. An additive mapping F : R! R is called a generalized derivation on R if there … Let R be a 2-torsion free ring and L a Lie ideal of R. An additive mapping F : R! R is called a generalized derivation on R if there exists a derivation d : R! R such that F (xy) = F (x)y+xd(y) holds for all x;y2 R. In the present paper we describe the action of generalized derivations satisfying several conditions on Lie ideals of semiprime rings.
Let<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mi>R</mml:mi></mml:mrow></mml:math>be a 2-torsion free ring and let<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mrow><mml:mi>L</mml:mi></mml:mrow></mml:math>be a noncentral Lie ideal of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M3"><mml:mrow><mml:mi>R</mml:mi></mml:mrow></mml:math>, and let<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M4"><mml:mi>F</mml:mi><mml:mo>:</mml:mo><mml:mi>R</mml:mi><mml:mo>→</mml:mo><mml:mi>R</mml:mi></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M5"><mml:mi>G</mml:mi><mml:mo>:</mml:mo><mml:mi>R</mml:mi><mml:mo>→</mml:mo><mml:mi>R</mml:mi></mml:math>be two generalized derivations of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M6"><mml:mrow><mml:mi>R</mml:mi></mml:mrow></mml:math>. … Let<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mi>R</mml:mi></mml:mrow></mml:math>be a 2-torsion free ring and let<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mrow><mml:mi>L</mml:mi></mml:mrow></mml:math>be a noncentral Lie ideal of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M3"><mml:mrow><mml:mi>R</mml:mi></mml:mrow></mml:math>, and let<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M4"><mml:mi>F</mml:mi><mml:mo>:</mml:mo><mml:mi>R</mml:mi><mml:mo>→</mml:mo><mml:mi>R</mml:mi></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M5"><mml:mi>G</mml:mi><mml:mo>:</mml:mo><mml:mi>R</mml:mi><mml:mo>→</mml:mo><mml:mi>R</mml:mi></mml:math>be two generalized derivations of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M6"><mml:mrow><mml:mi>R</mml:mi></mml:mrow></mml:math>. We will analyse the structure of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M7"><mml:mrow><mml:mi>R</mml:mi></mml:mrow></mml:math>in the following cases: (a)<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M8"><mml:mrow><mml:mi>R</mml:mi></mml:mrow></mml:math>is prime and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M9"><mml:mi>F</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mrow><mml:mi>u</mml:mi></mml:mrow><mml:mrow><mml:mi>m</mml:mi></mml:mrow></mml:msup><mml:mo stretchy="false">)</mml:mo><mml:mo>=</mml:mo><mml:mi>G</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mrow><mml:mi>u</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup><mml:mo stretchy="false">)</mml:mo></mml:math>for all<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M10"><mml:mi>u</mml:mi><mml:mo>∈</mml:mo><mml:mi>L</mml:mi></mml:math>and fixed positive integers<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M11"><mml:mi>m</mml:mi><mml:mo>≠</mml:mo><mml:mi>n</mml:mi></mml:math>; (b)<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M12"><mml:mrow><mml:mi>R</mml:mi></mml:mrow></mml:math>is prime and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M13"><mml:mi>F</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mrow><mml:mi>u</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msup><mml:msup><mml:mrow><mml:mi>v</mml:mi></mml:mrow><mml:mrow><mml:mi>q</mml:mi></mml:mrow></mml:msup><mml:msup><mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mi>m</mml:mi></mml:mrow></mml:msup><mml:mo stretchy="false">)</mml:mo><mml:mo>=</mml:mo><mml:mi>G</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mrow><mml:mi>v</mml:mi></mml:mrow><mml:mrow><mml:mi>r</mml:mi></mml:mrow></mml:msup><mml:msup><mml:mrow><mml:mi>u</mml:mi></mml:mrow><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msup><mml:msup><mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup><mml:mo stretchy="false">)</mml:mo></mml:math>for all<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M14"><mml:mi>u</mml:mi><mml:mo>,</mml:mo><mml:mi>v</mml:mi><mml:mo>∈</mml:mo><mml:mi>L</mml:mi></mml:math>and fixed integers<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M15"><mml:mi>m</mml:mi><mml:mo>,</mml:mo><mml:mi>n</mml:mi><mml:mo>,</mml:mo><mml:mi>p</mml:mi><mml:mo>,</mml:mo><mml:mi>q</mml:mi><mml:mo>,</mml:mo><mml:mi>r</mml:mi><mml:mo>,</mml:mo><mml:mi>s</mml:mi><mml:mo>≥</mml:mo><mml:mn mathvariant="normal">1</mml:mn></mml:math>; (c)<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M16"><mml:mrow><mml:mi>R</mml:mi></mml:mrow></mml:math>is semiprime and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M17"><mml:mi>F</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mo stretchy="false">(</mml:mo><mml:mi>u</mml:mi><mml:mi>v</mml:mi><mml:msup><mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup><mml:mo stretchy="false">)</mml:mo><mml:mo>=</mml:mo><mml:mi>G</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mo stretchy="false">(</mml:mo><mml:mi>v</mml:mi><mml:mi>u</mml:mi><mml:msup><mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup><mml:mo stretchy="false">)</mml:mo></mml:math>for all<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M18"><mml:mi>u</mml:mi><mml:mo>,</mml:mo><mml:mi>v</mml:mi><mml:mo>∈</mml:mo><mml:mo stretchy="false">[</mml:mo><mml:mi>R</mml:mi><mml:mo>,</mml:mo><mml:mi>R</mml:mi><mml:mo stretchy="false">]</mml:mo></mml:math>and fixed integer<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M19"><mml:mi>n</mml:mi><mml:mo>≥</mml:mo><mml:mn mathvariant="normal">1</mml:mn></mml:math>; and (d)<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M20"><mml:mrow><mml:mi>R</mml:mi></mml:mrow></mml:math>is semiprime and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M21"><mml:mi>F</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mo stretchy="false">(</mml:mo><mml:mi>u</mml:mi><mml:mi>v</mml:mi><mml:msup><mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup><mml:mo stretchy="false">)</mml:mo><mml:mo>=</mml:mo><mml:mi>G</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mo stretchy="false">(</mml:mo><mml:mi>v</mml:mi><mml:mi>u</mml:mi><mml:msup><mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup><mml:mo stretchy="false">)</mml:mo></mml:math>for all<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M22"><mml:mi>u</mml:mi><mml:mo>,</mml:mo><mml:mi>v</mml:mi><mml:mo>∈</mml:mo><mml:mi>R</mml:mi></mml:math>and fixed integer<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M23"><mml:mi>n</mml:mi><mml:mo>≥</mml:mo><mml:mn mathvariant="normal">1</mml:mn></mml:math>.
Let R be a prime ring with characteristic different from 2 and L be a Lie ideal of R. In this paper, we characterize generalized left derivation, which acts as … Let R be a prime ring with characteristic different from 2 and L be a Lie ideal of R. In this paper, we characterize generalized left derivation, which acts as a homomorphisms or an anti-homomorphisms on L.
If F, D : R → R are additive mappings which satisfySimilar type of result has been done for the other identity forcing to generalized derivation and at last an … If F, D : R → R are additive mappings which satisfySimilar type of result has been done for the other identity forcing to generalized derivation and at last an example has given in support of the theorems.
This paper aims to study spacelike surfaces from a given spacelike curve in Minkowski 3–space. Also, we investigate the necessary and sufficient conditions for the given space-like curve to be … This paper aims to study spacelike surfaces from a given spacelike curve in Minkowski 3–space. Also, we investigate the necessary and sufficient conditions for the given space-like curve to be the line of curvature on the space-like surface. Depending on the causal character of the curve, the necessary and sufficient conditions for the given space-like curve to satisfy the line of curvature and the geodesic (resp. asymptotic) requirements are also analyzed. Furthermore, we give with illustration some computational examples in support of our main results.
LetH be a real or complex Hilbert space with dim(H) &gt; 1, B(H) be algebra of all bounded linear operators on H and A(H) ? B(H) be a standard operator … LetH be a real or complex Hilbert space with dim(H) &gt; 1, B(H) be algebra of all bounded linear operators on H and A(H) ? B(H) be a standard operator algebra on H. If D : A(H) ? B(H) is a linear mapping satisfying D(An+1) = Pn i=0 AiD(A)(A*)n?i for all A ? A(H), then D is a Jordan *-derivation on A(H). Later, we discuss some algebraic identities on semiprime rings.
Let n ⩾ 1 be a fixed integer and let R be an (n + 1)!-torsion free ∗-ring with identity element e. If F, d:R → R are two additive … Let n ⩾ 1 be a fixed integer and let R be an (n + 1)!-torsion free ∗-ring with identity element e. If F, d:R → R are two additive mappings satisfying F(xn+1) = F(x)(x∗)n + xd(x)(x∗)n−1 + x2d(x)(x∗)n−2+ ⋯ +xnd(x) for all x ∈ R, then d is a Jordan ∗-derivation and F is a generalized Jordan ∗-derivation on R.
&lt;abstract&gt;&lt;p&gt;Let $ \mathcal{A} $ be a $ (p+q)! $-torsion free semiprime ring. We proved that if $ \mathcal{H}, \mathcal{D} : \mathcal{A}\to \mathcal{A} $ are two additive mappings fulfilling the algebraic … &lt;abstract&gt;&lt;p&gt;Let $ \mathcal{A} $ be a $ (p+q)! $-torsion free semiprime ring. We proved that if $ \mathcal{H}, \mathcal{D} : \mathcal{A}\to \mathcal{A} $ are two additive mappings fulfilling the algebraic identity $ 2\mathcal{H}(a^{p+q}) = \mathcal{H}(a^p) a^q+ a^p \mathcal{D}(a^q)+\mathcal{H}(a^q) a^p+ a^q \mathcal{D}(a^p) $ for all $ a\in \mathcal{A} $, then $ \mathcal{H} $ is a generalized derivation with $ \mathcal{D} $ as an associated derivation on $ \mathcal{A} $. In addition to that, it is also proved in this article that $ \mathcal{H}_1 $ is a generalized left derivation associated with a left derivation $ \delta $ on $ \mathcal{A} $ if they fulfilled the algebraic identity $ 2\mathcal{H}_1(a^{p+q}) = a^p \mathcal{H}_1(a^q)+ a^q \delta(a^p)+a^q \mathcal{H}_1(a^p)+ a^p \delta(a^q) $ for all $ a \in \mathcal{A} $. Further, the legitimacy of these hypotheses is eventually demonstrated by examples and at last, an application of Banach algebra is presented.&lt;/p&gt;&lt;/abstract&gt;
In this paper we describe generalized left $\ast$-derivation $F:R\to R$ in $\ast$-prime ring and prove that if $F$ acts as homomorphism or anti-homomorphism on $R$, then either $R$ is commutative … In this paper we describe generalized left $\ast$-derivation $F:R\to R$ in $\ast$-prime ring and prove that if $F$ acts as homomorphism or anti-homomorphism on $R$, then either $R$ is commutative or $F$ is a right $\ast$-centralizer on $R$. Analogous results have been proved for generalized left $\ast$-biderivation and Jordan $\ast$-centralizer on $R$.
In the present paper we investigate the commutativity in a prime ring R which admits biderivation D : R×R → R satisfying [D(x,x),D(y,y)] = [x,y] for all x,y ∈ R. … In the present paper we investigate the commutativity in a prime ring R which admits biderivation D : R×R → R satisfying [D(x,x),D(y,y)] = [x,y] for all x,y ∈ R. More precisely, we generalize the result of Bell et.al.[3] on strong commutativity preserving biderivations. Moreover, we obtain that generalized biderivation acts as left bimultiplier, whenever it behaves as right R-homomorphisms.
Consider a ring $R$, which is semiprime and also having $k$-torsion freeness. If $F, d : R\to R$ are two additive maps fulfilling the algebraic identity $$F(x^{n+m})=F(x^m) x^n+ x^m d(x^n)$$ … Consider a ring $R$, which is semiprime and also having $k$-torsion freeness. If $F, d : R\to R$ are two additive maps fulfilling the algebraic identity $$F(x^{n+m})=F(x^m) x^n+ x^m d(x^n)$$ for each $x$ in $R.$ Then $F$ will be a generalized derivation having $d$ as an associated derivation on $R$. On the other hand, in this article, it is also derived that $f$ is a generalized left derivation having a linked left derivation $\delta$ on $R$ if they satisfy the algebraic identity $$f(x^{n+m})=x^n f(x^m)+ x^m \delta(x^n)$$ for each $x$ in $R$ and $k\in \{2, m, n, (n+m-1)!\}$ and at last an application on Banach algebra is presented.
&lt;abstract&gt;&lt;p&gt;The goal of this study is to bring out the following conclusion. Let $ R $ be a noncommutative prime ring with $ 2(m+n)! $ torsion freeness and let $ … &lt;abstract&gt;&lt;p&gt;The goal of this study is to bring out the following conclusion. Let $ R $ be a noncommutative prime ring with $ 2(m+n)! $ torsion freeness and let $ m $ and $ n $ be fixed, non-negative integers and $ d, g $ be Jordan derivations on $ R $. If $ x^{m+n}d(x)+x^mg(x)x^n\in Z(R) $ or $ d(x)x^{m+n}+x^mg(x)x^n\in Z(R) $ or $ x^{n}d(x)x^{m}+x^mg(x)x^n\in Z(R) $ then $ d = g = 0 $ follows for every $ x\in R $.&lt;/p&gt;&lt;/abstract&gt;
Let R be a semiprime ring, (α1,α2) be automorphisms on R and Δ, δ be additive maps from R to R. If Δ and δ satisfying any one of the … Let R be a semiprime ring, (α1,α2) be automorphisms on R and Δ, δ be additive maps from R to R. If Δ and δ satisfying any one of the following identities:i) Δ(xnyn)=Δ(xn)α1(yn)+α2(xn)δ(yn)ii) Δ(xn)=Δ(xn-m)α1(xm)+α2(xn-m)δ(xm), for all x,y∈Rthen Δ will be generalized (α1,α2)-derivation with associated (α1,α2)-derivation on R.
Let R be a k-torsion free semiprime ring.Suppose that F, d : R → R be two additive mappings which satisfy the algebraic identitywhere α and β are automorphisms on … Let R be a k-torsion free semiprime ring.Suppose that F, d : R → R be two additive mappings which satisfy the algebraic identitywhere α and β are automorphisms on R. Then F is a generalized (α, β)-derivation with associated (α, β)derivation d on R, where k ∈ {2, n, 2n -1}.On the other hand, it is proved that f is a generalized Jordan left (α, β)-derivation associated with Jordan left (α, β)-derivation δ on R if they satisfy the algebraic identity f) for all x ∈ R together with some restrictions on R.
Abstract The objective of this research is to prove that an additive mapping $$\Delta :{\mathcal {A}}\rightarrow {\mathcal {A}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>Δ</mml:mi> <mml:mo>:</mml:mo> <mml:mi>A</mml:mi> <mml:mo>→</mml:mo> <mml:mi>A</mml:mi> </mml:mrow> </mml:math> will be … Abstract The objective of this research is to prove that an additive mapping $$\Delta :{\mathcal {A}}\rightarrow {\mathcal {A}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>Δ</mml:mi> <mml:mo>:</mml:mo> <mml:mi>A</mml:mi> <mml:mo>→</mml:mo> <mml:mi>A</mml:mi> </mml:mrow> </mml:math> will be a generalized derivation associated with a derivation $$\partial :{\mathcal {A}}\rightarrow {\mathcal {A}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>∂</mml:mi> <mml:mo>:</mml:mo> <mml:mi>A</mml:mi> <mml:mo>→</mml:mo> <mml:mi>A</mml:mi> </mml:mrow> </mml:math> if it satisfies the following identity $$\Delta (r^{m+n+p})=\Delta (r^m)r^{n+p}+r^m\partial (r^{n})r^p+r^{m+n}\partial (r^p)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>Δ</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>r</mml:mi> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo>+</mml:mo> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:mi>p</mml:mi> </mml:mrow> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mi>Δ</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>r</mml:mi> <mml:mi>m</mml:mi> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> <mml:msup> <mml:mi>r</mml:mi> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:mi>p</mml:mi> </mml:mrow> </mml:msup> <mml:mo>+</mml:mo> <mml:msup> <mml:mi>r</mml:mi> <mml:mi>m</mml:mi> </mml:msup> <mml:mi>∂</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>r</mml:mi> <mml:mi>n</mml:mi> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> <mml:msup> <mml:mi>r</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:mo>+</mml:mo> <mml:msup> <mml:mi>r</mml:mi> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo>+</mml:mo> <mml:mi>n</mml:mi> </mml:mrow> </mml:msup> <mml:mi>∂</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>r</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> for all $$r\in {\mathcal {A}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>r</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>A</mml:mi> </mml:mrow> </mml:math> , where $$m, n\ge 1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> and $$p\ge 0$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> are fixed integers and $${\mathcal {A}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>A</mml:mi> </mml:math> is a semiprime ring. Another analogous has been done where an additive mapping behaves like a generalized left derivation associated with a left derivation on $${\mathcal {A}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>A</mml:mi> </mml:math> satisfying certain algebraic identity. The proofs of these advancements are derived employing algebraic concepts. These theorems have been validated by offering an example that shows they are not insignificant. Furthermore, we provide an application in the framework of Banach algebra.
This paper’s major goal is to work on commutativity of σ-prime rings with second kind involution σ, involving generalized derivation satisfy the certain differential identities. Finally, we provide some examples … This paper’s major goal is to work on commutativity of σ-prime rings with second kind involution σ, involving generalized derivation satisfy the certain differential identities. Finally, we provide some examples to demonstrate that the conditions assumed in our results are not unnecessary
Our goal in this study is to validate the following finding: Assume that a prime ring R having , D is a symmetric skew 3-derivation on R with automorphisms α. … Our goal in this study is to validate the following finding: Assume that a prime ring R having , D is a symmetric skew 3-derivation on R with automorphisms α. If ∇1, ∇2 : R3 → R are symmetric generalized skew 3-derivations with α and associated skew 3-derivations D1, D2 respectively such that for every , then either ∇1 = 0 or ∇2 = 0 on R, where ∂1 and ∂2 stands for the traces of ∇1 and ∇2 respectively.
The goal of this research is to describe the structure of Jordan (σ, ρ)-n-derivations on a prime ring. By (σ, ρ)- n-derivations, we mean n-additive maps ℑ : Rn →R … The goal of this research is to describe the structure of Jordan (σ, ρ)-n-derivations on a prime ring. By (σ, ρ)- n-derivations, we mean n-additive maps ℑ : Rn →R satisfying the following property in each n-slot: ℑ(pq, ϖ1, ··· , ϖn−1) = ℑ(p, ϖ1, ··· , ϖn−1)σ(q) +ρ(p)ℑ(q, ϖ1, ··· , ϖn−1), for every p, q, ϖ1, ··· , ϖn−1∈ R. We find the conditions under which every Jordan (σ, ρ)-n-derivation becomes a (σ, ρ)-n-derivation. Moreover, the concept of ∗-n-centralizers on ∗-ring has given. The ∗-ring is also used for examining some outcomes, where left and right ∗-n-centralizers are significant
The intention of the current investigation is to demonstrate that if an additive mapping $\mathcal{H}:R\to R$ fulfills any one of the following identities:\begin{enumerate}\item [$(i)$] $3\mathcal{H}(r^{3p})=\mathcal{H}(r^p)\varphi(r^{2p})+\varphi(r^p) \mathcal{H}(r^{p})\varphi(r^p)+ \varphi(r^{2p})\mathcal{H}(r^p)$\item [$(ii)$] $2\mathcal{H}(r^{2p})=\mathcal{H}(r^p)\varphi(r^{p})+\varphi(r^p)\mathcal{H}(r^{p})$\item [$(ii)$] … The intention of the current investigation is to demonstrate that if an additive mapping $\mathcal{H}:R\to R$ fulfills any one of the following identities:\begin{enumerate}\item [$(i)$] $3\mathcal{H}(r^{3p})=\mathcal{H}(r^p)\varphi(r^{2p})+\varphi(r^p) \mathcal{H}(r^{p})\varphi(r^p)+ \varphi(r^{2p})\mathcal{H}(r^p)$\item [$(ii)$] $2\mathcal{H}(r^{2p})=\mathcal{H}(r^p)\varphi(r^{p})+\varphi(r^p)\mathcal{H}(r^{p})$\item [$(ii)$] $\mathcal{H}(r^{3p})=\varphi(r^p) \mathcal{H}(r^{p}) \varphi(r^p)$ for all $r\in R$,\end{enumerate}then $\mathcal{H}$ is a $\varphi$-centralizer on $R$, where $R$ is any suitable, torsion-free semiprime ring and $p$ is a fixed integer greater than or equal to 1. As a result of the primary theorems, involution $I_v$ related observations are also provided. We will also consider criticism and discussion alongside the proofs of theorems. Suitable examples given in favor of justification.
Let $\mathcal{B}$ be a unital $\varnothing$-ring with a $2$-torsion free that contains non-trivial symmetric idempotent. For any $B_1,B_2,B_3,\ldots,B_n \in \mathcal{B}$, a product $B_1 \circ B_2=B_1B_2+B_2B_1$ is called Jordan product and … Let $\mathcal{B}$ be a unital $\varnothing$-ring with a $2$-torsion free that contains non-trivial symmetric idempotent. For any $B_1,B_2,B_3,\ldots,B_n \in \mathcal{B}$, a product $B_1 \circ B_2=B_1B_2+B_2B_1$ is called Jordan product and $B_1 \bullet B_2=B_1B_2+B_2B_1^\varnothing$ is recognized as a skew Jordan product. Characterize mixed Jordan triple product as $Q_3(B_1,B_2,B_3)=B_1 \circ B_2 \bullet B_3$ and mixed Jordan $n$-product as $Q_n(B_1,B_2,\ldots,B_n)=B_1 \circ B_2 \circ \cdots \bullet B_n$ for all integer $n\geq3$. The present paper deals that a mapping which is called multiplicative mixed Jordan $n$-derivation, $\Psi$: $\mathcal{B} \rightarrow \mathcal{B}$ satisfies $\Psi(Q_n(B_1,B_2,\ldots,B_n))=\sum_{i=1}^{n} Q_n(B_1, \ldots, B_{i-1}, \Psi(B_i), B_{i+1}, \ldots,B_n)$ for all $B_1, B_2,\ldots, B_n \in \mathcal{B}$ if and only if $\Psi$ is an additive $\varnothing$-derivation. Finally, primary outcome is applicable in various specific categories of unital $\varnothing$-rings and $\varnothing$-algebras including prime $\varnothing$-rings, prime $\varnothing$-algebras and factor von Neumann algebras.
Let $\mathcal{B}$ be a unital $\varnothing$-ring with a $2$-torsion free that contains non-trivial symmetric idempotent. For any $B_1,B_2,B_3,\ldots,B_n \in \mathcal{B}$, a product $B_1 \circ B_2=B_1B_2+B_2B_1$ is called Jordan product and … Let $\mathcal{B}$ be a unital $\varnothing$-ring with a $2$-torsion free that contains non-trivial symmetric idempotent. For any $B_1,B_2,B_3,\ldots,B_n \in \mathcal{B}$, a product $B_1 \circ B_2=B_1B_2+B_2B_1$ is called Jordan product and $B_1 \bullet B_2=B_1B_2+B_2B_1^\varnothing$ is recognized as a skew Jordan product. Characterize mixed Jordan triple product as $Q_3(B_1,B_2,B_3)=B_1 \circ B_2 \bullet B_3$ and mixed Jordan $n$-product as $Q_n(B_1,B_2,\ldots,B_n)=B_1 \circ B_2 \circ \cdots \bullet B_n$ for all integer $n\geq3$. The present paper deals that a mapping which is called multiplicative mixed Jordan $n$-derivation, $\Psi$: $\mathcal{B} \rightarrow \mathcal{B}$ satisfies $\Psi(Q_n(B_1,B_2,\ldots,B_n))=\sum_{i=1}^{n} Q_n(B_1, \ldots, B_{i-1}, \Psi(B_i), B_{i+1}, \ldots,B_n)$ for all $B_1, B_2,\ldots, B_n \in \mathcal{B}$ if and only if $\Psi$ is an additive $\varnothing$-derivation. Finally, primary outcome is applicable in various specific categories of unital $\varnothing$-rings and $\varnothing$-algebras including prime $\varnothing$-rings, prime $\varnothing$-algebras and factor von Neumann algebras.
The intention of the current investigation is to demonstrate that if an additive mapping $\mathcal{H}:R\to R$ fulfills any one of the following identities:\begin{enumerate}\item [$(i)$] $3\mathcal{H}(r^{3p})=\mathcal{H}(r^p)\varphi(r^{2p})+\varphi(r^p) \mathcal{H}(r^{p})\varphi(r^p)+ \varphi(r^{2p})\mathcal{H}(r^p)$\item [$(ii)$] $2\mathcal{H}(r^{2p})=\mathcal{H}(r^p)\varphi(r^{p})+\varphi(r^p)\mathcal{H}(r^{p})$\item [$(ii)$] … The intention of the current investigation is to demonstrate that if an additive mapping $\mathcal{H}:R\to R$ fulfills any one of the following identities:\begin{enumerate}\item [$(i)$] $3\mathcal{H}(r^{3p})=\mathcal{H}(r^p)\varphi(r^{2p})+\varphi(r^p) \mathcal{H}(r^{p})\varphi(r^p)+ \varphi(r^{2p})\mathcal{H}(r^p)$\item [$(ii)$] $2\mathcal{H}(r^{2p})=\mathcal{H}(r^p)\varphi(r^{p})+\varphi(r^p)\mathcal{H}(r^{p})$\item [$(ii)$] $\mathcal{H}(r^{3p})=\varphi(r^p) \mathcal{H}(r^{p}) \varphi(r^p)$ for all $r\in R$,\end{enumerate}then $\mathcal{H}$ is a $\varphi$-centralizer on $R$, where $R$ is any suitable, torsion-free semiprime ring and $p$ is a fixed integer greater than or equal to 1. As a result of the primary theorems, involution $I_v$ related observations are also provided. We will also consider criticism and discussion alongside the proofs of theorems. Suitable examples given in favor of justification.
The goal of this research is to describe the structure of Jordan (σ, ρ)-n-derivations on a prime ring. By (σ, ρ)- n-derivations, we mean n-additive maps ℑ : Rn →R … The goal of this research is to describe the structure of Jordan (σ, ρ)-n-derivations on a prime ring. By (σ, ρ)- n-derivations, we mean n-additive maps ℑ : Rn →R satisfying the following property in each n-slot: ℑ(pq, ϖ1, ··· , ϖn−1) = ℑ(p, ϖ1, ··· , ϖn−1)σ(q) +ρ(p)ℑ(q, ϖ1, ··· , ϖn−1), for every p, q, ϖ1, ··· , ϖn−1∈ R. We find the conditions under which every Jordan (σ, ρ)-n-derivation becomes a (σ, ρ)-n-derivation. Moreover, the concept of ∗-n-centralizers on ∗-ring has given. The ∗-ring is also used for examining some outcomes, where left and right ∗-n-centralizers are significant
Our goal in this study is to validate the following finding: Assume that a prime ring R having , D is a symmetric skew 3-derivation on R with automorphisms α. … Our goal in this study is to validate the following finding: Assume that a prime ring R having , D is a symmetric skew 3-derivation on R with automorphisms α. If ∇1, ∇2 : R3 → R are symmetric generalized skew 3-derivations with α and associated skew 3-derivations D1, D2 respectively such that for every , then either ∇1 = 0 or ∇2 = 0 on R, where ∂1 and ∂2 stands for the traces of ∇1 and ∇2 respectively.
This paper’s major goal is to work on commutativity of σ-prime rings with second kind involution σ, involving generalized derivation satisfy the certain differential identities. Finally, we provide some examples … This paper’s major goal is to work on commutativity of σ-prime rings with second kind involution σ, involving generalized derivation satisfy the certain differential identities. Finally, we provide some examples to demonstrate that the conditions assumed in our results are not unnecessary
&lt;abstract&gt;&lt;p&gt;Let $ \mathcal{A} $ be a $ (p+q)! $-torsion free semiprime ring. We proved that if $ \mathcal{H}, \mathcal{D} : \mathcal{A}\to \mathcal{A} $ are two additive mappings fulfilling the algebraic … &lt;abstract&gt;&lt;p&gt;Let $ \mathcal{A} $ be a $ (p+q)! $-torsion free semiprime ring. We proved that if $ \mathcal{H}, \mathcal{D} : \mathcal{A}\to \mathcal{A} $ are two additive mappings fulfilling the algebraic identity $ 2\mathcal{H}(a^{p+q}) = \mathcal{H}(a^p) a^q+ a^p \mathcal{D}(a^q)+\mathcal{H}(a^q) a^p+ a^q \mathcal{D}(a^p) $ for all $ a\in \mathcal{A} $, then $ \mathcal{H} $ is a generalized derivation with $ \mathcal{D} $ as an associated derivation on $ \mathcal{A} $. In addition to that, it is also proved in this article that $ \mathcal{H}_1 $ is a generalized left derivation associated with a left derivation $ \delta $ on $ \mathcal{A} $ if they fulfilled the algebraic identity $ 2\mathcal{H}_1(a^{p+q}) = a^p \mathcal{H}_1(a^q)+ a^q \delta(a^p)+a^q \mathcal{H}_1(a^p)+ a^p \delta(a^q) $ for all $ a \in \mathcal{A} $. Further, the legitimacy of these hypotheses is eventually demonstrated by examples and at last, an application of Banach algebra is presented.&lt;/p&gt;&lt;/abstract&gt;
Abstract The objective of this research is to prove that an additive mapping $$\Delta :{\mathcal {A}}\rightarrow {\mathcal {A}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>Δ</mml:mi> <mml:mo>:</mml:mo> <mml:mi>A</mml:mi> <mml:mo>→</mml:mo> <mml:mi>A</mml:mi> </mml:mrow> </mml:math> will be … Abstract The objective of this research is to prove that an additive mapping $$\Delta :{\mathcal {A}}\rightarrow {\mathcal {A}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>Δ</mml:mi> <mml:mo>:</mml:mo> <mml:mi>A</mml:mi> <mml:mo>→</mml:mo> <mml:mi>A</mml:mi> </mml:mrow> </mml:math> will be a generalized derivation associated with a derivation $$\partial :{\mathcal {A}}\rightarrow {\mathcal {A}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>∂</mml:mi> <mml:mo>:</mml:mo> <mml:mi>A</mml:mi> <mml:mo>→</mml:mo> <mml:mi>A</mml:mi> </mml:mrow> </mml:math> if it satisfies the following identity $$\Delta (r^{m+n+p})=\Delta (r^m)r^{n+p}+r^m\partial (r^{n})r^p+r^{m+n}\partial (r^p)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>Δ</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>r</mml:mi> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo>+</mml:mo> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:mi>p</mml:mi> </mml:mrow> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mi>Δ</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>r</mml:mi> <mml:mi>m</mml:mi> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> <mml:msup> <mml:mi>r</mml:mi> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:mi>p</mml:mi> </mml:mrow> </mml:msup> <mml:mo>+</mml:mo> <mml:msup> <mml:mi>r</mml:mi> <mml:mi>m</mml:mi> </mml:msup> <mml:mi>∂</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>r</mml:mi> <mml:mi>n</mml:mi> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> <mml:msup> <mml:mi>r</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:mo>+</mml:mo> <mml:msup> <mml:mi>r</mml:mi> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo>+</mml:mo> <mml:mi>n</mml:mi> </mml:mrow> </mml:msup> <mml:mi>∂</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>r</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> for all $$r\in {\mathcal {A}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>r</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>A</mml:mi> </mml:mrow> </mml:math> , where $$m, n\ge 1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> and $$p\ge 0$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> are fixed integers and $${\mathcal {A}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>A</mml:mi> </mml:math> is a semiprime ring. Another analogous has been done where an additive mapping behaves like a generalized left derivation associated with a left derivation on $${\mathcal {A}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>A</mml:mi> </mml:math> satisfying certain algebraic identity. The proofs of these advancements are derived employing algebraic concepts. These theorems have been validated by offering an example that shows they are not insignificant. Furthermore, we provide an application in the framework of Banach algebra.
Consider a ring $R$, which is semiprime and also having $k$-torsion freeness. If $F, d : R\to R$ are two additive maps fulfilling the algebraic identity $$F(x^{n+m})=F(x^m) x^n+ x^m d(x^n)$$ … Consider a ring $R$, which is semiprime and also having $k$-torsion freeness. If $F, d : R\to R$ are two additive maps fulfilling the algebraic identity $$F(x^{n+m})=F(x^m) x^n+ x^m d(x^n)$$ for each $x$ in $R.$ Then $F$ will be a generalized derivation having $d$ as an associated derivation on $R$. On the other hand, in this article, it is also derived that $f$ is a generalized left derivation having a linked left derivation $\delta$ on $R$ if they satisfy the algebraic identity $$f(x^{n+m})=x^n f(x^m)+ x^m \delta(x^n)$$ for each $x$ in $R$ and $k\in \{2, m, n, (n+m-1)!\}$ and at last an application on Banach algebra is presented.
Let R be a k-torsion free semiprime ring.Suppose that F, d : R → R be two additive mappings which satisfy the algebraic identitywhere α and β are automorphisms on … Let R be a k-torsion free semiprime ring.Suppose that F, d : R → R be two additive mappings which satisfy the algebraic identitywhere α and β are automorphisms on R. Then F is a generalized (α, β)-derivation with associated (α, β)derivation d on R, where k ∈ {2, n, 2n -1}.On the other hand, it is proved that f is a generalized Jordan left (α, β)-derivation associated with Jordan left (α, β)-derivation δ on R if they satisfy the algebraic identity f) for all x ∈ R together with some restrictions on R.
LetH be a real or complex Hilbert space with dim(H) &gt; 1, B(H) be algebra of all bounded linear operators on H and A(H) ? B(H) be a standard operator … LetH be a real or complex Hilbert space with dim(H) &gt; 1, B(H) be algebra of all bounded linear operators on H and A(H) ? B(H) be a standard operator algebra on H. If D : A(H) ? B(H) is a linear mapping satisfying D(An+1) = Pn i=0 AiD(A)(A*)n?i for all A ? A(H), then D is a Jordan *-derivation on A(H). Later, we discuss some algebraic identities on semiprime rings.
&lt;abstract&gt;&lt;p&gt;The goal of this study is to bring out the following conclusion. Let $ R $ be a noncommutative prime ring with $ 2(m+n)! $ torsion freeness and let $ … &lt;abstract&gt;&lt;p&gt;The goal of this study is to bring out the following conclusion. Let $ R $ be a noncommutative prime ring with $ 2(m+n)! $ torsion freeness and let $ m $ and $ n $ be fixed, non-negative integers and $ d, g $ be Jordan derivations on $ R $. If $ x^{m+n}d(x)+x^mg(x)x^n\in Z(R) $ or $ d(x)x^{m+n}+x^mg(x)x^n\in Z(R) $ or $ x^{n}d(x)x^{m}+x^mg(x)x^n\in Z(R) $ then $ d = g = 0 $ follows for every $ x\in R $.&lt;/p&gt;&lt;/abstract&gt;
Let R be a semiprime ring, (α1,α2) be automorphisms on R and Δ, δ be additive maps from R to R. If Δ and δ satisfying any one of the … Let R be a semiprime ring, (α1,α2) be automorphisms on R and Δ, δ be additive maps from R to R. If Δ and δ satisfying any one of the following identities:i) Δ(xnyn)=Δ(xn)α1(yn)+α2(xn)δ(yn)ii) Δ(xn)=Δ(xn-m)α1(xm)+α2(xn-m)δ(xm), for all x,y∈Rthen Δ will be generalized (α1,α2)-derivation with associated (α1,α2)-derivation on R.
This paper aims to study spacelike surfaces from a given spacelike curve in Minkowski 3–space. Also, we investigate the necessary and sufficient conditions for the given space-like curve to be … This paper aims to study spacelike surfaces from a given spacelike curve in Minkowski 3–space. Also, we investigate the necessary and sufficient conditions for the given space-like curve to be the line of curvature on the space-like surface. Depending on the causal character of the curve, the necessary and sufficient conditions for the given space-like curve to satisfy the line of curvature and the geodesic (resp. asymptotic) requirements are also analyzed. Furthermore, we give with illustration some computational examples in support of our main results.
If F, D : R → R are additive mappings which satisfySimilar type of result has been done for the other identity forcing to generalized derivation and at last an … If F, D : R → R are additive mappings which satisfySimilar type of result has been done for the other identity forcing to generalized derivation and at last an example has given in support of the theorems.
In the present paper we investigate the commutativity in a prime ring R which admits biderivation D : R×R → R satisfying [D(x,x),D(y,y)] = [x,y] for all x,y ∈ R. … In the present paper we investigate the commutativity in a prime ring R which admits biderivation D : R×R → R satisfying [D(x,x),D(y,y)] = [x,y] for all x,y ∈ R. More precisely, we generalize the result of Bell et.al.[3] on strong commutativity preserving biderivations. Moreover, we obtain that generalized biderivation acts as left bimultiplier, whenever it behaves as right R-homomorphisms.
Let R be a 2-torsion free ring and L a Lie ideal of R. An additive mapping F : R! R is called a generalized derivation on R if there … Let R be a 2-torsion free ring and L a Lie ideal of R. An additive mapping F : R! R is called a generalized derivation on R if there exists a derivation d : R! R such that F (xy) = F (x)y+xd(y) holds for all x;y2 R. In the present paper we describe the action of generalized derivations satisfying several conditions on Lie ideals of semiprime rings.
For a ring R with an automorphism α a 4-additive mapping D : R4−→ R is called a skew 4-derivation w.r.t. α if it is a α-derivation of R for … For a ring R with an automorphism α a 4-additive mapping D : R4−→ R is called a skew 4-derivation w.r.t. α if it is a α-derivation of R for each argument. Namely it is always an α-derivation of R for the argument being left once (3) arguments are fixed by (3) elements in R. In the present note, begin with a result of Jung and Park [5], we prove that if a skew 4-derivation D associated with an automorphism α with trace f of a noncommutative prime ring R under suitable torsion condition satisfying [f(x),α(x)] = 0 for all x ∈ I, a nonzero ideal of R, then D = 0.
Let R be a prime ring with characteristic different from 2 and L be a Lie ideal of R. In this paper, we characterize generalized left derivation, which acts as … Let R be a prime ring with characteristic different from 2 and L be a Lie ideal of R. In this paper, we characterize generalized left derivation, which acts as a homomorphisms or an anti-homomorphisms on L.
Let<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mi>R</mml:mi></mml:mrow></mml:math>be a 2-torsion free ring and let<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mrow><mml:mi>L</mml:mi></mml:mrow></mml:math>be a noncentral Lie ideal of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M3"><mml:mrow><mml:mi>R</mml:mi></mml:mrow></mml:math>, and let<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M4"><mml:mi>F</mml:mi><mml:mo>:</mml:mo><mml:mi>R</mml:mi><mml:mo>→</mml:mo><mml:mi>R</mml:mi></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M5"><mml:mi>G</mml:mi><mml:mo>:</mml:mo><mml:mi>R</mml:mi><mml:mo>→</mml:mo><mml:mi>R</mml:mi></mml:math>be two generalized derivations of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M6"><mml:mrow><mml:mi>R</mml:mi></mml:mrow></mml:math>. … Let<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mi>R</mml:mi></mml:mrow></mml:math>be a 2-torsion free ring and let<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mrow><mml:mi>L</mml:mi></mml:mrow></mml:math>be a noncentral Lie ideal of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M3"><mml:mrow><mml:mi>R</mml:mi></mml:mrow></mml:math>, and let<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M4"><mml:mi>F</mml:mi><mml:mo>:</mml:mo><mml:mi>R</mml:mi><mml:mo>→</mml:mo><mml:mi>R</mml:mi></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M5"><mml:mi>G</mml:mi><mml:mo>:</mml:mo><mml:mi>R</mml:mi><mml:mo>→</mml:mo><mml:mi>R</mml:mi></mml:math>be two generalized derivations of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M6"><mml:mrow><mml:mi>R</mml:mi></mml:mrow></mml:math>. We will analyse the structure of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M7"><mml:mrow><mml:mi>R</mml:mi></mml:mrow></mml:math>in the following cases: (a)<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M8"><mml:mrow><mml:mi>R</mml:mi></mml:mrow></mml:math>is prime and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M9"><mml:mi>F</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mrow><mml:mi>u</mml:mi></mml:mrow><mml:mrow><mml:mi>m</mml:mi></mml:mrow></mml:msup><mml:mo stretchy="false">)</mml:mo><mml:mo>=</mml:mo><mml:mi>G</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mrow><mml:mi>u</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup><mml:mo stretchy="false">)</mml:mo></mml:math>for all<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M10"><mml:mi>u</mml:mi><mml:mo>∈</mml:mo><mml:mi>L</mml:mi></mml:math>and fixed positive integers<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M11"><mml:mi>m</mml:mi><mml:mo>≠</mml:mo><mml:mi>n</mml:mi></mml:math>; (b)<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M12"><mml:mrow><mml:mi>R</mml:mi></mml:mrow></mml:math>is prime and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M13"><mml:mi>F</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mrow><mml:mi>u</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msup><mml:msup><mml:mrow><mml:mi>v</mml:mi></mml:mrow><mml:mrow><mml:mi>q</mml:mi></mml:mrow></mml:msup><mml:msup><mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mi>m</mml:mi></mml:mrow></mml:msup><mml:mo stretchy="false">)</mml:mo><mml:mo>=</mml:mo><mml:mi>G</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mrow><mml:mi>v</mml:mi></mml:mrow><mml:mrow><mml:mi>r</mml:mi></mml:mrow></mml:msup><mml:msup><mml:mrow><mml:mi>u</mml:mi></mml:mrow><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msup><mml:msup><mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup><mml:mo stretchy="false">)</mml:mo></mml:math>for all<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M14"><mml:mi>u</mml:mi><mml:mo>,</mml:mo><mml:mi>v</mml:mi><mml:mo>∈</mml:mo><mml:mi>L</mml:mi></mml:math>and fixed integers<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M15"><mml:mi>m</mml:mi><mml:mo>,</mml:mo><mml:mi>n</mml:mi><mml:mo>,</mml:mo><mml:mi>p</mml:mi><mml:mo>,</mml:mo><mml:mi>q</mml:mi><mml:mo>,</mml:mo><mml:mi>r</mml:mi><mml:mo>,</mml:mo><mml:mi>s</mml:mi><mml:mo>≥</mml:mo><mml:mn mathvariant="normal">1</mml:mn></mml:math>; (c)<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M16"><mml:mrow><mml:mi>R</mml:mi></mml:mrow></mml:math>is semiprime and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M17"><mml:mi>F</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mo stretchy="false">(</mml:mo><mml:mi>u</mml:mi><mml:mi>v</mml:mi><mml:msup><mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup><mml:mo stretchy="false">)</mml:mo><mml:mo>=</mml:mo><mml:mi>G</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mo stretchy="false">(</mml:mo><mml:mi>v</mml:mi><mml:mi>u</mml:mi><mml:msup><mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup><mml:mo stretchy="false">)</mml:mo></mml:math>for all<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M18"><mml:mi>u</mml:mi><mml:mo>,</mml:mo><mml:mi>v</mml:mi><mml:mo>∈</mml:mo><mml:mo stretchy="false">[</mml:mo><mml:mi>R</mml:mi><mml:mo>,</mml:mo><mml:mi>R</mml:mi><mml:mo stretchy="false">]</mml:mo></mml:math>and fixed integer<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M19"><mml:mi>n</mml:mi><mml:mo>≥</mml:mo><mml:mn mathvariant="normal">1</mml:mn></mml:math>; and (d)<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M20"><mml:mrow><mml:mi>R</mml:mi></mml:mrow></mml:math>is semiprime and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M21"><mml:mi>F</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mo stretchy="false">(</mml:mo><mml:mi>u</mml:mi><mml:mi>v</mml:mi><mml:msup><mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup><mml:mo stretchy="false">)</mml:mo><mml:mo>=</mml:mo><mml:mi>G</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mo stretchy="false">(</mml:mo><mml:mi>v</mml:mi><mml:mi>u</mml:mi><mml:msup><mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup><mml:mo stretchy="false">)</mml:mo></mml:math>for all<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M22"><mml:mi>u</mml:mi><mml:mo>,</mml:mo><mml:mi>v</mml:mi><mml:mo>∈</mml:mo><mml:mi>R</mml:mi></mml:math>and fixed integer<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M23"><mml:mi>n</mml:mi><mml:mo>≥</mml:mo><mml:mn mathvariant="normal">1</mml:mn></mml:math>.
Let n ⩾ 1 be a fixed integer and let R be an (n + 1)!-torsion free ∗-ring with identity element e. If F, d:R → R are two additive … Let n ⩾ 1 be a fixed integer and let R be an (n + 1)!-torsion free ∗-ring with identity element e. If F, d:R → R are two additive mappings satisfying F(xn+1) = F(x)(x∗)n + xd(x)(x∗)n−1 + x2d(x)(x∗)n−2+ ⋯ +xnd(x) for all x ∈ R, then d is a Jordan ∗-derivation and F is a generalized Jordan ∗-derivation on R.
In this paper we describe generalized left $\ast$-derivation $F:R\to R$ in $\ast$-prime ring and prove that if $F$ acts as homomorphism or anti-homomorphism on $R$, then either $R$ is commutative … In this paper we describe generalized left $\ast$-derivation $F:R\to R$ in $\ast$-prime ring and prove that if $F$ acts as homomorphism or anti-homomorphism on $R$, then either $R$ is commutative or $F$ is a right $\ast$-centralizer on $R$. Analogous results have been proved for generalized left $\ast$-biderivation and Jordan $\ast$-centralizer on $R$.
In this paper, we introduce the notion of generalized left derivation on a ring R and prow that every generalized Jordan left derivation on a 2-torsion free primp ring is … In this paper, we introduce the notion of generalized left derivation on a ring R and prow that every generalized Jordan left derivation on a 2-torsion free primp ring is a generalized left derivation on R. Some related results are also obtained.
I. N. Herstein has shown that every Jordan derivation on a prime ring not of charactetistic <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="2"> <mml:semantics> <mml:mn>2</mml:mn> <mml:annotation encoding="application/x-tex">2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a … I. N. Herstein has shown that every Jordan derivation on a prime ring not of charactetistic <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="2"> <mml:semantics> <mml:mn>2</mml:mn> <mml:annotation encoding="application/x-tex">2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a derivation. This result is extended in this paper to the case of any ring in which <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="2 x equals 0"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>x</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">2x = 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> implies <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="x equals 0"> <mml:semantics> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">x = 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and which is semiprime or which has a commutator which is not a zero divisor.
iqaqaq)bq + qaqbqaq = 0 iqaqaq)bq + qaqbqaq = 0
1. Given any associative ring A one can construct from its operations and elements a new ring, the Jordan ring of A, by defining the product in this ring to … 1. Given any associative ring A one can construct from its operations and elements a new ring, the Jordan ring of A, by defining the product in this ring to be a o b=ab+ba for all a, bEA, where the product ab signifies the product of a and b in the associative ring A itself. If R is any ring, associative or otherwise, by a derivation of R we shall mean a function, ', mapping R into itself so that
Let $\Cal K$ be a semiprime ring and $T:\Cal K\rightarrow \Cal K$ an additive mapping such that $T(x^2)=T(x)x$ holds for all $x\in \Cal K$. Then $T$ is a left centralizer … Let $\Cal K$ be a semiprime ring and $T:\Cal K\rightarrow \Cal K$ an additive mapping such that $T(x^2)=T(x)x$ holds for all $x\in \Cal K$. Then $T$ is a left centralizer of $\Cal K$. It is also proved that Jordan centralizers and centralizers of $\Cal K$ coincide.
Let R be a ring and S a nonempty subset of R . Suppose that θ and ϕ are endomorphisms of R . An additive mapping δ : R → … Let R be a ring and S a nonempty subset of R . Suppose that θ and ϕ are endomorphisms of R . An additive mapping δ : R → R is called a left ( θ , ϕ )‐derivation (resp., Jordan left ( θ , ϕ )‐derivation) on S if δ ( x y ) = θ ( x ) δ ( y ) + ϕ ( y ) δ ( x ) (resp., δ ( x 2 ) = θ ( x ) δ ( x ) + ϕ ( x ) δ ( x )) holds for all x , y ∈ S . Suppose that J is a Jordan ideal and a subring of a 2‐torsion‐free prime ring R . In the present paper, it is shown that if θ is an automorphism of R such that δ ( x 2 ) = 2 θ ( x ) δ ( x ) holds for all x ∈ J , then either J ⫅ Z ( R ) or δ ( J ) = (0). Further, a study of left ( θ , θ )‐derivations of a prime ring R has been made which acts either as a homomorphism or as an antihomomorphism of the ring R .
In 1955 I. M. Singer and J. Wermer proved that a bounded derivation on a commutative Banach algebra maps into the (Jacobson) radical; they conjectured that this result holds even … In 1955 I. M. Singer and J. Wermer proved that a bounded derivation on a commutative Banach algebra maps into the (Jacobson) radical; they conjectured that this result holds even if the derivation is unbounded. We give a proof of this conjecture. The central idea in the proof is the introduction of the concept of a recalcitrant system of elements in a commutative radical Banach algebra. Such systems put algebraic constraints upon a derivation which prevent the derivation from mapping outside of the radical.
Let fi bca ring and X be a left Z?-module.The purpose of this paper is to investigate additive mappings £>, : R -> X and D2: R -» X that … Let fi bca ring and X be a left Z?-module.The purpose of this paper is to investigate additive mappings £>, : R -> X and D2: R -» X that satisfy Dx(ab) = aDx(b) + bDx(a), a, b e R (left derivation) and D2(a ) = 2aD2(a), a e R (Jordan left derivation).We show, by the rather weak assumptions, that the existence of a nonzero Jordan left derivation of R into X implies R is commutative.This result is used to prove two noncommutative extensions of the classical Singer-Wermer theorem. PreliminariesThroughout, R will represent an associative ring with center Z(R).Recall that R is prime if aRb -0 implies a = 0 or b -0, and R is semiprime if aRa -0 implies a = 0.A module X is said to be zz-torsionfree, where zz is an integer, if zzx = 0, x e X implies x = 0. Let R be a ring and X be an T\-bimodule.An additive mapping D: R -► X is called a derivation (Jordan derivation) if D(ab) = D(a)b + aD(b), a, b e R (D(a2) = D(a)a + aD(a), a e R).Obviously, every derivation is a Jordan derivation.The converse in general is not true.A well-known result of I. N. Herstein [6] states that in case R is a prime ring of characteristic not 2, then every Jordan derivation D: R -► R is a derivation.A brief proof of this result in presented in our recent paper [3].An additive mapping D : R -» X, where R is a ring and X is a left Rmodule will be called a left derivation if D(ab) = aD(b) + bD(a), a , b e R.An additive mapping D: R -> X will be called a Jordan left derivation if D(a ) -2aD(a), a € R. It turns out that the notion of Jordan left derivations is in a close connection with so-called commuting mappings.A mapping 7 of a ring R into itself is said to be commuting on R if F(a)a = aF(a) for all a e
A well-known theorem of E. Posner [10] states that if the composition d 1 d 2 of derivations d 1 d 2 of a prime ring A of characteristic not … A well-known theorem of E. Posner [10] states that if the composition d 1 d 2 of derivations d 1 d 2 of a prime ring A of characteristic not 2 is a derivation, then either d 1 = 0 or d 2 = 0. A number of authors have generalized this theorem in several ways (see e.g. [1], [2], and [5], where further references can be found). Under stronger assumptions when A is the algebra of all bounded linear operators on a Banach space (resp. Hilbert space), Posner's theorem was reproved in [3] (resp. [12]). Recently, M. Mathieu [8] extended Posner's theorem to arbitrary C * -algebras.
Abstract Let R be a left faithful ringU its right Utumi quotient ring and ρ a dense right ideal of R. An additive map g: ρ → U is called … Abstract Let R be a left faithful ringU its right Utumi quotient ring and ρ a dense right ideal of R. An additive map g: ρ → U is called a generalized derivation if there exists a derivation δ of ρ into U such that for all x,y∈ρ. In this note, we prove that there exists an element a∈ U such that for all x ∈ ρ. From this characterization, it is proved that if R is a semiprime ring and if g is a generalized derivation with nilpotent values of bounded index, then g = 0. Analogous results are also obtained for the case of generalized derivations with nilpotent values on Lie ideals or one-sided ideals.
If F, D : R → R are additive mappings which satisfySimilar type of result has been done for the other identity forcing to generalized derivation and at last an … If F, D : R → R are additive mappings which satisfySimilar type of result has been done for the other identity forcing to generalized derivation and at last an example has given in support of the theorems.
In this paper we prove that generalized Jordan derivations and generalized Jordan triple derivation of 2-torsion free semiprime rings are generalized derivations. In this paper we prove that generalized Jordan derivations and generalized Jordan triple derivation of 2-torsion free semiprime rings are generalized derivations.
In this paper we initiate the study of generalized Jordan derivations and generalized Jordan triple derivations on prime rings and standard operator algebras. In this paper we initiate the study of generalized Jordan derivations and generalized Jordan triple derivations on prime rings and standard operator algebras.
Let $R$ be a 2-torsion free prime ring and let $U$ be a Lie ideal of $R$ such that $u^{2} \in U$ for all $u \in U$. In the present … Let $R$ be a 2-torsion free prime ring and let $U$ be a Lie ideal of $R$ such that $u^{2} \in U$ for all $u \in U$. In the present paper it is shown that if $d$ is an additive mappings of $R$ into itself satisfying $d(u^{2})=2ud(u)$ for all $u \in U$, then $d(uv)=ud(v)+vd(u)$ for all $u,v \in U$.
The purpose of this paper is to present a brief proof of the well known result of Herstein which states that any Jordan derivation on a prime ring with characteristic … The purpose of this paper is to present a brief proof of the well known result of Herstein which states that any Jordan derivation on a prime ring with characteristic not two is a derivation.
Let [Formula: see text] be an *-algebra with identity [Formula: see text] and [Formula: see text] and [Formula: see text] nontrivial symmetric idempotents in [Formula: see text]. In this paper … Let [Formula: see text] be an *-algebra with identity [Formula: see text] and [Formula: see text] and [Formula: see text] nontrivial symmetric idempotents in [Formula: see text]. In this paper we study the characterization of nonlinear mixed *-Jordan-type derivations. In particular, if [Formula: see text] is a factor von Neumann algebra then every unital nonlinear mixed *-Jordan-type derivations are additive *-derivations.
The main result: Let R be a 2-torsion free semiprime ring with extended centroid C and let T : R → R be an additive mapping.Suppose that 3T (xyx) = … The main result: Let R be a 2-torsion free semiprime ring with extended centroid C and let T : R → R be an additive mapping.Suppose that 3T (xyx) = T (x)yx + xT (y)x + xyT (x) holds for all x, y ∈ R. Then there exists an element λ ∈ C such that T (x) = λx for all x ∈ R.
We first give several polynomial identities of semiprime rings which make the additive mappings appearing in the identities to be generalized derivations. Then we study pairs of generalized Jordan derivations … We first give several polynomial identities of semiprime rings which make the additive mappings appearing in the identities to be generalized derivations. Then we study pairs of generalized Jordan derivations on prime rings. Let m,n be fixed positive integers, \mathcal R be a noncommutative 2(m+n)! -torsion free prime ring with the center \mathcal Z and μ, ν be a pair of generalized Jordan derivations on \mathcal R . If μ(x^m)x^n+x^nν(x^m) \in \mathcal Z for all x \in \mathcal R , then μ and ν are left (or right) multipliers. In particular, if μ , ν are a pair of derivations on \mathcal R satisfying the same assumption, then μ = ν = 0 . Then applying these purely algebraic result we obtain several range inclusion results of pair of derivations on Banach algebras.
We generalize a number of results in the literature by proving the following theorem: Let $R$ be a semiprime ring, $D$ a nonzero derivation of $R$, $L$ a nonzero left … We generalize a number of results in the literature by proving the following theorem: Let $R$ be a semiprime ring, $D$ a nonzero derivation of $R$, $L$ a nonzero left ideal of $R$, and let $[x,y]=xy-yx$. If for some positive integers $t_0,t_1,\dots , t_n$, and all $x\in L$, the identity $[[\dots [[D(x^{t_0}),x^{t_1}],x^{t_2}],\dots ],x^{t_n}]=0$ holds, then either $D(L)=0$ or else the ideal of $R$ generated by $D(L)$ and $D(R)L$ is in the center of $R$. In particular, when $R$ is a prime ring, $R$ is commutative.
Let R be a unital alternative ring with nontrivial idempotent and D:R→R be a Jordan derivation. Then D is of the form d+δ, where d is a derivation of R … Let R be a unital alternative ring with nontrivial idempotent and D:R→R be a Jordan derivation. Then D is of the form d+δ, where d is a derivation of R and δ is a singular Jordan derivation of R. Moreover, d and δ are uniquely determined. This extends the main result of Benkovič and Širovnik's to the case of alternative rings.
In Part II these results are applied to obtain a generalization of a theorem proved in [5].We showed there that if T is an isometric isomorphism of (real, X We … In Part II these results are applied to obtain a generalization of a theorem proved in [5].We showed there that if T is an isometric isomorphism of (real, X We are using the notation and terminology of [5].In particular, for elements x and y of L (G) the symbol xy denotes the usual convolution-product.
Let n ⩾ 1 be a fixed integer and let R be an (n + 1)!-torsion free ∗-ring with identity element e. If F, d:R → R are two additive … Let n ⩾ 1 be a fixed integer and let R be an (n + 1)!-torsion free ∗-ring with identity element e. If F, d:R → R are two additive mappings satisfying F(xn+1) = F(x)(x∗)n + xd(x)(x∗)n−1 + x2d(x)(x∗)n−2+ ⋯ +xnd(x) for all x ∈ R, then d is a Jordan ∗-derivation and F is a generalized Jordan ∗-derivation on R.
Let R be a ring and S a nonempty subset of R. A mapping f: R → R is called commuting on S if [f(x),x] = 0 for all x … Let R be a ring and S a nonempty subset of R. A mapping f: R → R is called commuting on S if [f(x),x] = 0 for all x ∈ S. In this paper, firstly, we generalize the well-known result of Posner related to commuting derivations on prime rings. Secondly, we show that if R is a semiprime ring and I is a nonzero ideal of R, then a derivation d of R is commuting on I if one of the following conditions holds: (i) For all x, y ∈ I, either d([x,y]) = [x,y] or d([x,y]) = -[x,y]. (ii) For all x, y ∈ I, either d(x ◦ y) = x ◦ y or d(x ◦ y) = -(x ◦ y). (iii) R is 2-torsion free, and for all x, y ∈ I, either [d(x),d(y)] = d([x,y]) or [d(x),d(y)] = d([y,x]). Furthermore, if d(I) ≠ {0}, then R has a nonzero central ideal. Finally, we introduce the notation of generalized biderivation and prove that every generalized biderivation on a noncommutative prime ring is a biderivation.
Let R be a prime ring with characteristic different from two, U a nonzero Lie ideal of R and f be a generalized derivation associated with d. We prove the … Let R be a prime ring with characteristic different from two, U a nonzero Lie ideal of R and f be a generalized derivation associated with d. We prove the following results: (i) If (u, f (u)) ∈ Z, for all u ∈ U, then U ⊂ Z. (ii) (f,d )a nd (g, h) be two generalized derivations of R such that f (u)v = ug(v), for all u, v ∈ U, then U ⊂ Z. (iii) f ((u, v)) = ±(u, v), for all u, v ∈ U, then U ⊂ Z.
Throughout, R will represent an associative ring with center Z(R). A module X is said to be n-torsionfree, where n is an integer, if nx = 0, $x \in X$ … Throughout, R will represent an associative ring with center Z(R). A module X is said to be n-torsionfree, where n is an integer, if nx = 0, $x \in X$ implies x = 0. An additive mapping $D : R \to X$, where X is a left R-module, will be called a Jordan left derivation if $D(a^2) = 2aD(a), a \in R$. M. Bresar and J. Vukman [1] showed that the existence of a nonzero Jordan left derivation of R into X implies R is commutative if X is a 2-torsionfree and 3-torsionfree left R-module.
1. IntroductionLet R be an associative ring with center Z = Z(R). For each x;y 2 Rdenote the commutator xy yx by [x;y] and the anti-commutator xy +yxby xy. Recall … 1. IntroductionLet R be an associative ring with center Z = Z(R). For each x;y 2 Rdenote the commutator xy yx by [x;y] and the anti-commutator xy +yxby xy. Recall that a ring R is prime if for any a;b 2 R, aRb = f0g impliesthat a = 0 or b = 0. An additive mapping d : R ! R is called a derivationif d(xy) = d(x)y +xd(y) for all x;y 2 R. In particular, for xed a 2 R, themapping I
Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a prime ring and let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper U"> <mml:semantics> <mml:mi>U</mml:mi> <mml:annotation encoding="application/x-tex">U</mml:annotation> … Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a prime ring and let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper U"> <mml:semantics> <mml:mi>U</mml:mi> <mml:annotation encoding="application/x-tex">U</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be its Utumi quotient ring. We prove the following: (1) If <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> satisfies a GPI having all its coefficients in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper U"> <mml:semantics> <mml:mi>U</mml:mi> <mml:annotation encoding="application/x-tex">U</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> satisfies a GPI having all its coefficients in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. (2) <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper U"> <mml:semantics> <mml:mi>U</mml:mi> <mml:annotation encoding="application/x-tex">U</mml:annotation> </mml:semantics> </mml:math> </inline-formula> satisfy the same GPIs having their coefficients in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper U"> <mml:semantics> <mml:mi>U</mml:mi> <mml:annotation encoding="application/x-tex">U</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.
Let m ≥ 0, n ≥ 0 be fixed integers with m + n = 0 and let R be a ring.It is our aim in this paper to investigate … Let m ≥ 0, n ≥ 0 be fixed integers with m + n = 0 and let R be a ring.It is our aim in this paper to investigate additive mapping T : R → R satisfying the relation (m + n)T (x 2 ) = mT (x)x + nxT (x) for all x ∈ R.
In this paper we prove that generalized Jordan derivations and generalized Jordan triple derivation of 2−torsion free semiprime rings are generalized derivations. In this paper we prove that generalized Jordan derivations and generalized Jordan triple derivation of 2−torsion free semiprime rings are generalized derivations.
Let R be a 2‐torsion free semiprime ring, I a nonzero ideal of R , Z the center of R and D : R → R a derivation. If d … Let R be a 2‐torsion free semiprime ring, I a nonzero ideal of R , Z the center of R and D : R → R a derivation. If d [ x , y ] + [ x , y ] ∈ Z or d [ x , y ] − [ x , y ] ∈ Z for all x , y ∈ I , then R is commutative.