Max-Heinrich Laves

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Unsupervised anomaly detection in 3D brain MRI using deep learning with multi-task brain age prediction 2022 Marcel Bengs
Finn Behrendt
Max-Heinrich Laves
Julia Krüger
Roland Opfer
Alexander Schlaefer
+ PDF Chat Posterior temperature optimized Bayesian models for inverse problems in medical imaging 2022 Max-Heinrich Laves
Malte Tölle
Alexander Schlaefer
Sandy Engelhardt
+ PDF Chat Robotic Tissue Sampling for Safe Post-Mortem Biopsy in Infectious Corpses 2022 Maximilian Neidhardt
Stefan Gerlach
Robin Mieling
Max-Heinrich Laves
Thorben Weib
Martin Gromniak
Antonia Fitzek
Dustin Möbius
Inga Kniep
Alexandra Ron
+ Unsupervised Anomaly Detection in 3D Brain MRI using Deep Learning with Multi-Task Brain Age Prediction 2022 Marcel Bengs
Finn Behrendt
Max-Heinrich Laves
Julia Krüger
Roland Opfer
Alexander Schlaefer
+ Posterior temperature optimized Bayesian models for inverse problems in medical imaging 2022 Max-Heinrich Laves
Malte Tölle
Alexander Schlaefer
Sandy Engelhardt
+ Posterior Temperature Optimization in Variational Inference for Inverse Problems. 2021 Max-Heinrich Laves
Malte Tölle
Alexander Schlaefer
Sandy Engelhardt
+ Cold Posteriors Improve Bayesian Medical Image Post-Processing 2021 Max-Heinrich Laves
Malte Tölle
Alexander Schlaefer
+ Posterior Temperature Optimization in Variational Inference. 2021 Max-Heinrich Laves
Malte Tölle
Alexander Schlaefer
+ PDF Chat Recalibration of Aleatoric and EpistemicRegression Uncertainty in Medical Imaging 2021 Max-Heinrich Laves
Sontje Ihler
Jacob Friedemann Fast
Lüder A. Kahrs
Tobias Ortmaier
+ Recalibration of Aleatoric and Epistemic Regression Uncertainty in Medical Imaging. 2021 Max-Heinrich Laves
Sontje Ihler
Jacob Friedemann Fast
Lüder A. Kahrs
Tobias Ortmaier
+ Posterior Temperature Optimization in Variational Inference for Inverse Problems 2021 Max-Heinrich Laves
Malte Tölle
Alexander Schlaefer
Sandy Engelhardt
+ Recalibration of Aleatoric and Epistemic Regression Uncertainty in Medical Imaging 2021 Max-Heinrich Laves
Sontje Ihler
Jacob Friedemann Fast
Lüder A. Kahrs
Tobias Ortmaier
+ Uncertainty Estimation in Medical Image Denoising with Bayesian Deep Image Prior 2020 Max-Heinrich Laves
Malte Tölle
Tobias Ortmaier
+ Patient-Specific Domain Adaptation for Fast Optical Flow Based on Teacher-Student Knowledge Transfer. 2020 Sontje Ihler
Max-Heinrich Laves
Tobias Ortmaier
+ Calibration of Model Uncertainty for Dropout Variational Inference 2020 Max-Heinrich Laves
Sontje Ihler
Karl-Philipp Kortmann
Tobias Ortmaier
+ PDF Chat Uncertainty Estimation in Medical Image Denoising with Bayesian Deep Image Prior 2020 Max-Heinrich Laves
Malte Tölle
Tobias Ortmaier
+ Uncertainty Estimation in Medical Image Denoising with Bayesian Deep Image Prior 2020 Max-Heinrich Laves
Malte Tölle
Tobias Ortmaier
+ Patient-Specific Domain Adaptation for Fast Optical Flow Based on Teacher-Student Knowledge Transfer 2020 Sontje Ihler
Max-Heinrich Laves
Tobias Ortmaier
+ Uncertainty Quantification in Computer-Aided Diagnosis: Make Your Model say "I don't know" for Ambiguous Cases 2019 Max-Heinrich Laves
Sontje Ihler
Tobias Ortmaier
+ Deformable Medical Image Registration Using a Randomly-Initialized CNN as Regularization Prior 2019 Max-Heinrich Laves
Sontje Ihler
Tobias Ortmaier
+ PDF Chat Semantic denoising autoencoders for retinal optical coherence tomography 2019 Max-Heinrich Laves
Sontje Ihler
Lüder A. Kahrs
Tobias Ortmaier
+ Semantic denoising autoencoders for retinal optical coherence tomography 2019 Max-Heinrich Laves
Sontje Ihler
Lüder A. Kahrs
Tobias Ortmaier
+ PDF Chat Deep-learning-based 2.5D flow field estimation for maximum intensity projections of 4D optical coherence tomography 2019 Max-Heinrich Laves
Lüder A. Kahrs
Tobias Ortmaier
Sontje Ihler
+ Endoscopic vs. volumetric OCT imaging of mastoid bone structure for pose estimation in minimally invasive cochlear implant surgery. 2019 Max-Heinrich Laves
Sarah Latus
Jan Bergmeier
Tobias Ortmaier
Lüder A. Kahrs
Alexander Schlaefer
+ PDF Chat A dataset of laryngeal endoscopic images with comparative study on convolution neural network-based semantic segmentation 2019 Max-Heinrich Laves
Jens Bicker
Lüder A. Kahrs
Tobias Ortmaier
+ Retinal OCT disease classification with variational autoencoder regularization 2019 Max-Heinrich Laves
Sontje Ihler
Lüder A. Kahrs
Tobias Ortmaier
+ Well-calibrated Model Uncertainty with Temperature Scaling for Dropout Variational Inference 2019 Max-Heinrich Laves
Sontje Ihler
Karl-Philipp Kortmann
Tobias Ortmaier
+ Semantic denoising autoencoders for retinal optical coherence tomography 2019 Max-Heinrich Laves
Sontje Ihler
Lüder A. Kahrs
Tobias Ortmaier
+ Deformable Medical Image Registration Using a Randomly-Initialized CNN as Regularization Prior 2019 Max-Heinrich Laves
Sontje Ihler
Tobias Ortmaier
+ Uncertainty Quantification in Computer-Aided Diagnosis: Make Your Model say "I don't know" for Ambiguous Cases 2019 Max-Heinrich Laves
Sontje Ihler
Tobias Ortmaier
+ Endoscopic vs. volumetric OCT imaging of mastoid bone structure for pose estimation in minimally invasive cochlear implant surgery 2019 Max-Heinrich Laves
Sarah Latus
Jan Bergmeier
Tobias Ortmaier
Lüder A. Kahrs
Alexander Schlaefer
+ Deep learning based 2.5D flow field estimation for maximum intensity projections of 4D optical coherence tomography 2018 Max-Heinrich Laves
Lüder A. Kahrs
Tobias Ortmaier
+ A Dataset of Laryngeal Endoscopic Images with Comparative Study on Convolution Neural Network Based Semantic Segmentation 2018 Max-Heinrich Laves
Jens Bicker
Lüder A. Kahrs
Tobias Ortmaier
+ Deep learning based 2.5D flow field estimation for maximum intensity projections of 4D optical coherence tomography 2018 Max-Heinrich Laves
Lüder A. Kahrs
Tobias Ortmaier
+ A Dataset of Laryngeal Endoscopic Images with Comparative Study on Convolution Neural Network Based Semantic Segmentation 2018 Max-Heinrich Laves
Jens Bicker
Lüder A. Kahrs
Tobias Ortmaier
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning 2015 Yarin Gal
Zoubin Ghahramani
8
+ What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? 2017 Alex Kendall
Yarin Gal
6
+ PDF Chat A deep learning approach for pose estimation from volumetric OCT data 2018 Nils Gessert
Matthias Schlüter
Alexander Schlaefer
5
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
5
+ PDF Chat Densely Connected Convolutional Networks 2017 Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
4
+ Pattern Recognition and Machine Learning 2007 Christopher Bishop
4
+ PDF Chat A Bayesian Perspective on the Deep Image Prior 2019 Zezhou Cheng
Matheus Gadelha
Subhransu Maji
Daniel Sheldon
3
+ Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles 2016 Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
3
+ PDF Chat Denoising adversarial autoencoders: classifying skin lesions using limited labelled training data 2018 Antonia Creswell
Alison Pouplin
Anil A. Bharath
3
+ PDF Chat Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising 2017 Kai Zhang
Wangmeng Zuo
Yunjin Chen
Deyu Meng
Lei Zhang
3
+ Accurate Uncertainties for Deep Learning Using Calibrated Regression 2018 Volodymyr Kuleshov
Nathan Fenner
Stefano Ermon
2
+ Well-calibrated Model Uncertainty with Temperature Scaling for Dropout Variational Inference 2019 Max-Heinrich Laves
Sontje Ihler
Karl-Philipp Kortmann
Tobias Ortmaier
2
+ PDF Chat On the Applicability of Registration Uncertainty 2019 Jie Luo
Alireza Sedghi
Karteek Popuri
Dana Cobzaş
Miaomiao Zhang
Frank Preiswerk
Matthew Toews
Alexandra J. Golby
Masashi Sugiyama
William M. Wells
2
+ PDF Chat Automatic kidney segmentation in ultrasound images using subsequent boundary distance regression and pixelwise classification networks 2019 Shi Yin
Qinmu Peng
Hongming Li
Zhengqiang Zhang
Xinge You
Katherine Fischer
Susan L. Furth
Gregory E. Tasian
Yong Fan
2
+ Bayesian Deep Learning and a Probabilistic Perspective of Generalization 2020 Andrew Gordon Wilson
Pavel Izmailov
2
+ Concrete Dropout 2017 Yarin Gal
Jiri Hron
Alex Kendall
2
+ Computed tomography reconstruction using deep image prior and learned reconstruction methods 2020 Daniel Otero Baguer
Johannes Leuschner
Maximilian Schmidt
2
+ PDF Chat Uncertainty in Multitask Learning: Joint Representations for Probabilistic MR-only Radiotherapy Planning 2018 Felix Bragman
Ryutaro Tanno
Zach Eaton-Rosen
Wenqi Li
David J. Hawkes
Sébastien Ourselin
Daniel C. Alexander
Jamie R. McClelland
M. Jorge Cardoso
2
+ PDF Chat Medical Image Denoising Using Convolutional Denoising Autoencoders 2016 Lovedeep Gondara
2
+ A Tutorial on Bayesian Optimization 2018 Peter I. Frazier
2
+ Categorical Reparameterization with Gumbel-Softmax 2016 Eric Jang
Shixiang Gu
Ben Poole
2
+ PDF Chat Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification 2015 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
2
+ PDF Chat Fully convolutional networks for semantic segmentation 2015 Jonathan Long
Evan Shelhamer
Trevor Darrell
2
+ PDF Chat FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks 2017 Eddy Ilg
N. Michael Mayer
Tonmoy Saikia
Margret Keuper
Alexey Dosovitskiy
Thomas Brox
2
+ PDF Chat Real-Time Segmentation of Non-rigid Surgical Tools Based on Deep Learning and Tracking 2017 Luis C. García-Peraza-Herrera
Wenqi Li
Caspar Gruijthuijsen
Alain Devreker
George Attilakos
Jan Deprest
Emmanuel Vander Poorten
Danail Stoyanov
Tom Vercauteren
Sébastien Ourselin
2
+ Calibrating Uncertainties in Object Localization Task 2018 Buu Phan
Rick Salay
Krzysztof Czarnecki
Vahdat Abdelzad
Taylor Denouden
Sachin Vernekar
2
+ Bayesian Learning via Stochastic Gradient Langevin Dynamics 2011 Max Welling
Yee Whye Teh
2
+ PDF Chat Automatic Classification of Cancerous Tissue in Laserendomicroscopy Images of the Oral Cavity using Deep Learning 2017 Marc Aubreville
Christian Knipfer
Nicolai Oetter
Christian Jaremenko
Erik Rodner
Joachim Denzler
Christopher Bohr
Helmut Neumann
Florian Stelzle
Andreas Maier
2
+ PDF Chat Bayesian Image Quality Transfer with CNNs: Exploring Uncertainty in dMRI Super-Resolution 2017 Ryutaro Tanno
Daniel E. Worrall
Aurobrata Ghosh
Enrico Kaden
Stamatios N. Sotiropoulos
Antonio Criminisi
Daniel C. Alexander
2
+ PDF Chat Unsupervised learning of probabilistic diffeomorphic registration for images and surfaces 2019 Adrian V. Dalca
Guha Balakrishnan
John Guttag
Mert R. Sabuncu
2
+ Integrating spatial configuration into heatmap regression based CNNs for landmark localization 2019 Christian Payer
Darko Štern
Horst Bischof
Martin Urschler
2
+ On Calibration of Modern Neural Networks 2017 Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
2
+ PDF Chat Evaluating and Calibrating Uncertainty Prediction in Regression Tasks 2022 Dan Levi
Liran Gispan
Niv Giladi
Ethan Fetaya
2
+ Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks 2015 Chunyuan Li
Changyou Chen
David Carlson
Lawrence Carin
2
+ Regularizing Neural Networks by Penalizing Confident Output Distributions 2017 Gabriel Pereyra
George Tucker
Jan Chorowski
Łukasz Kaiser
Geoffrey E. Hinton
2
+ PDF Chat The Cityscapes Dataset for Semantic Urban Scene Understanding 2016 Marius Cordts
Mohamed Omran
Sebastian Ramos
Timo Rehfeld
Markus Enzweiler
Rodrigo Benenson
Uwe Franke
Stefan Roth
Bernt Schiele
2
+ PDF Chat Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning? 2016 Nima Tajbakhsh
Jae Y. Shin
Suryakanth R. Gurudu
R. Todd Hurst
Christopher B. Kendall
Michael B. Gotway
Jianming Liang
2
+ Interactive Medical Image Segmentation Using Deep Learning With Image-Specific Fine Tuning 2018 Guotai Wang
Wenqi Li
María A. Zuluaga
Rosalind Pratt
Premal A. Patel
Michaël Aertsen
Tom Doel
Anna L. David
Jan Deprest
Sébastien Ourselin
2
+ ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation 2016 Adam Paszke
Abhishek Chaurasia
Sangpil Kim
Eugenio Culurciello
2
+ EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks 2019 Mingxing Tan
Quoc V. Le
2
+ PDF Chat Semantic denoising autoencoders for retinal optical coherence tomography 2019 Max-Heinrich Laves
Sontje Ihler
Lüder A. Kahrs
Tobias Ortmaier
2
+ PDF Chat Stochastic Deep Compressive Sensing for the Reconstruction of Diffusion Tensor Cardiac MRI 2018 Jo Schlemper
Guang Yang
Pedro Ferreira
Andrew D. Scott
Laura‐Ann McGill
Zohya Khalique
Margarita Gorodezky
Malte Roehl
Jennifer Keegan
Dudley J. Pennell
2
+ SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation 2017 Vijay Badrinarayanan
A. C. Kendall
Roberto Cipolla
2
+ PDF Chat Autoencoders for unsupervised anomaly segmentation in brain MR images: A comparative study 2021 Christoph Baur
Stefan Denner
Benedikt Wiestler
Nassir Navab
Shadi Albarqouni
1
+ Bayesian Uncertainty Estimation of Learned Variational MRI Reconstruction 2021 Dominik Narnhofer
Alexander Effland
Erich Kobler
Kerstin Hammernik
Florian Knöll
Thomas Pock
1
+ Recalibration of Aleatoric and Epistemic Regression Uncertainty in Medical Imaging. 2021 Max-Heinrich Laves
Sontje Ihler
Jacob Friedemann Fast
Lüder A. Kahrs
Tobias Ortmaier
1
+ PDF Chat MADGAN: unsupervised medical anomaly detection GAN using multiple adjacent brain MRI slice reconstruction 2021 Changhee Han
Leonardo Rundo
Kohei Murao
Tomoyuki Noguchi
Yuki Shimahara
Zoltán Á. Milacski
Saori Koshino
Evis Sala
Hideki Nakayama
Shin’ichi Satoh
1
+ What Are Bayesian Neural Network Posteriors Really Like 2021 Pavel Izmailov
Sharad Vikram
Matthew D. Hoffman
Andrew Gordon Wilson
1
+ PDF Chat Recalibration of Aleatoric and EpistemicRegression Uncertainty in Medical Imaging 2021 Max-Heinrich Laves
Sontje Ihler
Jacob Friedemann Fast
Lüder A. Kahrs
Tobias Ortmaier
1
+ PDF Chat Deep Learning for Medical Anomaly Detection – A Survey 2021 Tharindu Fernando
Harshala Gammulle
Simon Denman
Sridha Sridharan
Clinton Fookes
1