Juan Pablo Borgna

Follow

Generating author description...

All published works
Action Title Year Authors
+ Non trivial solutions for a system of coupled Ginzburg-Landau equations 2024 M. Leo
Juan Pablo Borgna
Cristian Huenchul
+ PDF Chat On the existence of nematic-superconducting states in the Ginzburg–Landau regime 2024 M. Leo
Juan Pablo Borgna
Diego GarcĂ­a Ovalle
+ PDF Chat Properties of some breather solutions of a nonlocal discrete NLS equation 2017 Roberto Ben
Juan Pablo Borgna
Panayotis Panayotaros
+ PDF Chat General splitting methods for abstract semilinear evolution equations 2014 Juan Pablo Borgna
Mariano De Leo
Diego Rial
Constanza SĂĄnchez de la Vega
+ PDF Chat Existence of ground states for a one-dimensional relativistic Schrödinger equation 2012 Juan Pablo Borgna
Diego Rial
+ Integrability of nonlinear wave equations and solvability of their initial value problem 2012 Juan Pablo Borgna
A. Degasperis
Mariano Fernando de Leo
Diego Rial
+ Lie-Trotter method for abstract semilinear evolution equations 2012 Juan Pablo Borgna
Mariano De Leo
Diego Rial
Constanza SĂĄnchez de la Vega
+ PDF Chat Orbital stability of numerical periodi nonlinear Schrödinger equation 2008 Juan Pablo Borgna
Diego Rial
+ Stability of periodic nonlinear Schrödinger equation 2007 Juan Pablo Borgna
+ Existence and Multiplicity Results for the Nonlinear Klein-Gordon Equation 2003 Pablo Amster
Juan Pablo Borgna
M. C. Mariani
Diego Rial
+ Multiple solutions of a stationary nonhomogeneous one-dimensional nonlinear SchrĂłdinger equation 2001 Pablo Amster
Juan Pablo Borgna
M. C. Mariani
Diego Rial
+ Solution to the mean curvature equation for nonparametric surfaces by fixed point methods 1999 Pablo Amster
Juan Pablo Borgna
Maria C. Mariani
Diego Rial
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Existence of solitary waves in higher dimensions 1977 Walter A. Strauss
4
+ PDF Chat Perturbation Theory for Linear Operators 1995 Tosio Kato
3
+ PDF Chat Odd-Parity Topological Superconductors: Theory and Application to<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>Cu</mml:mi><mml:mi>x</mml:mi></mml:msub><mml:msub><mml:mi>Bi</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>Se</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> 2010 Liang Fu
Erez Berg
2
+ PDF Chat Strain-driven nematicity of odd-parity superconductivity in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Sr</mml:mi><mml:mi>x</mml:mi></mml:msub><mml:msub><mml:mi>Bi</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>Se</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math> 2019 A. Yu. Kuntsevich
M. A. Bryzgalov
R. S. Akzyanov
V. P. MartovitskiÄ­
A. L. Rakhmanov
Yu. G. Selivanov
2
+ PDF Chat Competition between superconductivity and magnetic/nematic order as a source of anisotropic superconducting gap in underdoped<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">Ba</mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:msub></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">K</mml:mi><mml:mi>x</mml:mi></mml:msub></mml:math><mml:math xmlns:mml="
 2014 Hyunsoo Kim
M. A. Tanatar
Warren E. Straszheim
Kyuil Cho
J. A. Murphy
N. Spyrison
J.-Ph. Reid
Bing Shen
Hai-Hu Wen
Rafael M. Fernandes
2
+ PDF Chat Discrete light localization in one-dimensional nonlinear lattices with arbitrary nonlocality 2005 Andrea Fratalocchi
Gaetano Assanto
2
+ PDF Chat Time-reversal symmetry-breaking nematic superconductivity in FeSe 2018 Jian Kang
Andrey V. Chubukov
Rafael M. Fernandes
2
+ PDF Chat Coexistence of nematic order and superconductivity in the Hubbard model 2016 Jan Kaczmarczyk
Tobias Schickling
Jörg BĂŒnemann
2
+ PDF Chat Nodal and Nematic Superconducting Phases in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>NbSe</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math> Monolayers from Competing Superconducting Channels 2022 Chang-Woo Cho
Jian Lyu
Liheng An
Tianyi Han
Kwan To Lo
Cheuk Yin Ng
Jiaqi Hu
Yuxiang Gao
Gaomin Li
Mingyuan Huang
2
+ PDF Chat Energy Solution to a Schrödinger–Poisson System in the Two-Dimensional Whole Space 2011 Satoshi Masaki
2
+ PDF Chat A remark on the blowing-up of solutions to the Cauchy problem for nonlinear Schrödinger equations 1987 Otared Kavian
2
+ PDF Chat Nematic superconductivity in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Cu</mml:mi><mml:mi>x</mml:mi></mml:msub><mml:msub><mml:mi>Bi</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>Se</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math> : Surface Andreev bound states 2017 Lei Hao
C. S. Ting
2
+ PDF Chat Solitary waves in nematic liquid crystals 2013 Panayotis Panayotaros
T. R. Marchant
2
+ PDF Chat Competition between superconductivity and nematic order: Anisotropy of superconducting coherence length 2012 Eun-Gook Moon
Subir Sachdev
2
+ Construction of higher order symplectic integrators 1990 Haruo Yoshida
2
+ PDF Chat Identification of nematic superconductivity from the upper critical field 2016 Jörn W. F. Venderbos
Vladyslav Kozii
Liang Fu
2
+ PDF Chat Vortex and disclination structures in a nematic-superconductor state 2016 Daniel G. Barci
Rafael V. Clarim
N. L. Silva JĂșnior
2
+ PDF Chat Superconductivity in FeSe: The Role of Nematic Order 2018 Jian Kang
Rafael M. Fernandes
Andrey V. Chubukov
2
+ PDF Chat Signatures of nematic superconductivity in doped <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Bi</mml:mi><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:msub><mml:mi>Se</mml:mi><mml:msub><mml:mrow /><mml:mn>3</mml:mn></mml:msub></mml:math> under applied stress 2019 Pye Ton How
S.-K. Yip
2
+ PDF Chat Nematic superconductivity in twisted bilayer graphene 2020 Dmitry V. Chichinadze
Laura Classen
Andrey V. Chubukov
2
+ Lyapunov stability of ground states of nonlinear dispersive evolution equations 1986 Michael I. Weinstein
2
+ On the minimizers of the Ginzburg–Landau energy for high kappa: the one-dimensional case 1997 Amandine Aftalion
2
+ Integrability of nonlinear wave equations and solvability of their initial value problem 2012 Juan Pablo Borgna
A. Degasperis
Mariano Fernando de Leo
Diego Rial
2
+ PDF Chat Nematic superconductivity in the topological semimetal <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Ca</mml:mi><mml:msub><mml:mi>Sn</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math> 2022 H. Siddiquee
Riffat Munir
Charuni Dissanayake
Priyanka Vaidya
Cameron Nickle
Enrique del Barco
G. Lamura
C. Baines
SĂ©bastien Cahen
Claire HĂ©rold
2
+ Perturbation theory for a linear operator 1967 J. H. Webb
2
+ Stability of periodic nonlinear Schrödinger equation 2007 Juan Pablo Borgna
2
+ PDF Chat A Fourth-Order Time-Splitting Laguerre--Hermite Pseudospectral Method for Bose--Einstein Condensates 2005 Weizhu Bao
Jie Shen
2
+ Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations 1993 Jean Bourgain
2
+ On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case 1979 J. Ginibre
G. Velo
1
+ Nonlinear Schrïżœdinger equations and sharp interpolation estimates 1983 Michael I. Weinstein
1
+ Analysis and Approximation of the Ginzburg–Landau Model of Superconductivity 1992 Qiang Du
Max Gunzburger
Janet Peterson
1
+ The Three‐Wave Interaction—A Nondispersive Phenomenon 1976 D. J. Kaup
1
+ Modulational Stability of Ground States of Nonlinear Schrödinger Equations 1985 Michael I. Weinstein
1
+ PDF Chat Route to Nonlocality and Observation of Accessible Solitons 2003 Claudio Conti
Marco Peccianti
Gaetano Assanto
1
+ Integrable nonlocal wave interaction models 2011 A. Degasperis
1
+ PDF Chat Order Estimates in Time of Splitting Methods for the Nonlinear Schrödinger Equation 2002 Christophe Besse
Brigitte Bidégaray-Fesquet
Stéphane Descombes
1
+ PDF Chat The Three-Wave Resonant Interaction Equations: Spectral and Numerical Methods 2010 A. Degasperis
Matteo Conforti
Fabio Baronio
S. Wabnitz
Sara Lombardo
1
+ Order of Convergence of Splitting Schemes for Both Deterministic and Stochastic Nonlinear Schrödinger Equations 2013 Jie Liu
1
+ None 2000 Tobias Jahnke
Christian Lubich
1
+ Nonlinear Functional Analysis and its Applications 1990 Eberhard Zeidler
1
+ Korteweg-de Vries equation: A completely integrable Hamiltonian system 1972 В. Е. Đ—Đ°Ń…Đ°Ń€ĐŸĐČ
Lyudvig Dmitrievich Faddeev
1
+ Nonlinear scalar field equations, I existence of a ground state 1983 Henri Berestycki
P. L. Lions
1
+ PDF Chat Bistable reaction–diffusion on a network 2015 J-G Caputo
Gustavo Cruz-Pacheco
Panayotis Panayotaros
1
+ PDF Chat Universality of Crystallographic Pinning 2010 A. Hoffman
John Mallet‐Paret
1
+ <i>Theory of Ordinary Differential Equations</i> 1956 Earl A. Coddington
Norman Levinson
T. Teichmann
1
+ Coupled nonlinear evolution equations solvable via the inverse spectral transform, and solitons that come back: the boomeron 1976 F. Calogero
A. Degasperis
1
+ Diffraction Managed Solitons with Zero Mean Diffraction 2006 Milena Stanislavova
1
+ Breather solutions in the diffraction managed NLS equation 2005 Panayotis Panayotaros
1
+ Nonlinear Schrödinger evolution equations 1980 Haı̈m Brezis
Thierry Gallouët
1
+ Convergence of a split-step Hermite method for the Gross-Pitaevskii equation 2010 Ludwig J. Gauckler
1