Thomas S. Salisbury

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat The Riccati Tontine: How to Satisfy Regulators on Average 2024 Moshe A. Milevsky
Thomas S. Salisbury
+ PDF Chat The Riccati Tontine: How to Satisfy Regulators on Average 2024 Moshe A. Milevsky
Thomas S. Salisbury
+ PDF Chat A greedy algorithm for habit formation under multiplicative utility 2023 S. Kirusheva
Thomas S. Salisbury
+ A greedy algorithm for habit formation under multiplicative utility 2023 S. Kirusheva
Thomas S. Salisbury
+ PDF Chat Refundable income annuities: Feasibility of money-back guarantees 2022 Moshe A. Milevsky
Thomas S. Salisbury
+ Percolation of terraces, and enhancements for the orthant model 2022 Mark Holmes
Thomas S. Salisbury
+ Retirement spending problem under Habit Formation Model 2022 S. Kirusheva
H. Huang
Thomas S. Salisbury
+ PDF Chat A shape theorem for the orthant model 2021 Mark Holmes
Thomas S. Salisbury
+ Phase transitions for degenerate random environments 2021 Mark Holmes
Thomas S. Salisbury
+ PDF Chat Refundable Income Annuities: Feasibility of Money-Back Guarantees 2021 Moshe A. Milevsky
Thomas S. Salisbury
+ Optimal allocation to deferred income annuities 2021 F. Habib
Huaxiong Huang
A. Mauskopf
Branislav Nikolic
Thomas S. Salisbury
+ Refundable income annuities: Feasibility of money-back guarantees 2021 Moshe A. Milevsky
Thomas S. Salisbury
+ Phase transitions for degenerate random environments. 2019 Mark Holmes
Thomas S. Salisbury
+ A shape theorem for the orthant model 2019 Mark Holmes
Thomas S. Salisbury
+ Optimal allocation to Deferred Income Annuities 2019 F. Habib
Huaxiong Huang
A. Mauskopf
Branislav Nikolic
Thomas S. Salisbury
+ PDF Chat How round are the complementary components of planar Brownian motion? 2019 Nina Holden
Şerban Nacu
Yuval Peres
Thomas S. Salisbury
+ Phase transitions for degenerate random environments 2019 Mark Holmes
Thomas S. Salisbury
+ A shape theorem for the orthant model 2019 Mark Holmes
Thomas S. Salisbury
+ The implied longevity curve: How long does the market think you are going to live? 2018 Moshe A. Milevsky
Thomas S. Salisbury
Alexander Chigodaev
+ Retirement spending and biological age 2018 Huaxiong Huang
Moshe A. Milevsky
Thomas S. Salisbury
+ The implied longevity curve: How long does the market think you are going to live? 2018 Moshe A. Milevsky
Thomas S. Salisbury
Alexander Chigodaev
+ PDF Chat Optimal Allocation to Deferred Income Annuities 2018 Faisal Habib
Huaxiong Huang
A. Mauskopf
Branislav Nikolic
Thomas S. Salisbury
+ PDF Chat Retirement spending and biological age 2017 Huaxiong Huang
Moshe A. Milevsky
Thomas S. Salisbury
+ Conditions for ballisticity and invariance principle for random walk in non-elliptic random environment 2017 Mark Holmes
Thomas S. Salisbury
+ PDF Chat Retirement Spending and Biological Age 2017 Huaxiong Huang
Moshe A. Milevsky
Thomas S. Salisbury
+ Conditions for ballisticity and invariance principle for random walk in non-elliptic random environment 2016 Mark Holmes
Thomas S. Salisbury
+ Optimal retirement income tontines 2016 Moshe A. Milevsky
Thomas S. Salisbury
+ Equitable retirement income tontines: Mixing cohorts without discriminating 2016 Moshe A. Milevsky
Thomas S. Salisbury
+ How round are the complementary components of planar Brownian motion 2016 Nina Holden
Şerban Nacu
Yuval Peres
Thomas S. Salisbury
+ PDF Chat EQUITABLE RETIREMENT INCOME TONTINES: MIXING COHORTS WITHOUT DISCRIMINATING 2016 Moshe A. Milevsky
Thomas S. Salisbury
+ PDF Chat Forward Clusters for Degenerate Random Environments 2016 Mark Holmes
Thomas S. Salisbury
+ Notes on oriented percolation 2016 Mark Holmes
Thomas S. Salisbury
+ Equitable retirement income tontines: Mixing cohorts without discriminating 2016 Moshe A. Milevsky
Thomas S. Salisbury
+ Optimal retirement income tontines 2016 Moshe A. Milevsky
Thomas S. Salisbury
+ Conditions for ballisticity and invariance principle for random walk in non-elliptic random environment 2016 Mark Holmes
Thomas S. Salisbury
+ How round are the complementary components of planar Brownian motion? 2016 Nina Holden
Şerban Nacu
Yuval Peres
Thomas S. Salisbury
+ PDF Chat Optimal retirement income tontines 2015 Moshe A. Milevsky
Thomas S. Salisbury
+ Uniqueness for Volterra-type stochastic integral equations 2015 Leonid Mytnik
Thomas S. Salisbury
+ PDF Chat Equitable Retirement Income Tontines: Mixing Cohorts Without Discriminating 2015 Moshe A. Milevsky
Thomas S. Salisbury
+ Uniqueness for Volterra-type stochastic integral equations 2015 Leonid Mytnik
Thomas S. Salisbury
+ PDF Chat Moment Densities of Super Brownian Motion, and a Harnack Estimate for a Class of X-harmonic Functions 2014 Thomas S. Salisbury
Deniz Sezer
+ PDF Chat Optimal initiation of a GLWB in a variable annuity: No Arbitrage approach 2014 Huaxiong Huang
Moshe A. Milevsky
Thomas S. Salisbury
+ Conditioning super-Brownian motion on its boundary statistics, and fragmentation 2013 Thomas S. Salisbury
Deniz Sezer
+ Optimal Retirement Tontines for the 21st Century: With Reference to Mortality Derivatives in 1693 2013 Moshe A. Milevsky
Thomas S. Salisbury
+ PDF Chat Random Walks in Degenerate Random Environments 2013 Mark Holmes
Thomas S. Salisbury
+ Speed calculations for random walks in degenerate random environments 2013 Mark Holmes
Thomas S. Salisbury
+ PDF Chat Valuation and Hedging of the Ruin‐Contingent Life Annuity (RCLA) 2013 Huaxiong Huang
Moshe A. Milevsky
Thomas S. Salisbury
+ PDF Chat Non-existence of stabilizing policies for the critical push–pull network and generalizations 2013 Yoni Nazarathy
Leonardo Rojas‐Nandayapa
Thomas S. Salisbury
+ PDF Chat Optimal Retirement Tontines for the 21st Century: With Reference to Mortality Derivatives in 1693 2013 Moshe A. Milevsky
Thomas S. Salisbury
+ PDF Chat Optimal Initiation of a GLWB in a Variable Annuity: No Arbitrage Approach 2013 Moshe A. Milevsky
Huaxiong Huang
Thomas S. Salisbury
+ Optimal initiation of a GLWB in a variable annuity: no arbitrage approach 2013 Huaxiong Huang
Moshe A. Milevsky
Thomas S. Salisbury
+ Speed calculations for random walks in degenerate random environments 2013 Mark Holmes
Thomas S. Salisbury
+ Optimal Retirement Tontines for the 21st Century: With Reference to Mortality Derivatives in 1693 2013 Moshe A. Milevsky
Thomas S. Salisbury
+ PDF Chat Degenerate random environments 2012 Mark Holmes
Thomas S. Salisbury
+ Non-Existence of Stabilizing Policies for the Critical Push-Pull Network and Generalizations 2012 Yoni Nazarathy
Leonardo Rojas‐Nandayapa
Thomas S. Salisbury
+ Moment densities of super-Brownian motion, and a Harnack estimate for a class of X-harmonic functions 2012 Thomas S. Salisbury
Deniz Sezer
+ Optimal retirement consumption with a stochastic force of mortality 2012 Huaxiong Huang
Moshe A. Milevsky
Thomas S. Salisbury
+ PDF Chat Optimal retirement consumption with a stochastic force of mortality 2012 Huaxiong Huang
Moshe A. Milevsky
Thomas S. Salisbury
+ A different perspective on retirement income sustainability: the blueprint for a ruin contingent life annuity (RCLA) 2012 Huaxiong Huang
Moshe A. Milevsky
Thomas S. Salisbury
+ Valuation and hedging of the ruin-contingent life annuity (RCLA) 2012 Huaxiong Huang
Moshe A. Milevsky
Thomas S. Salisbury
+ Optimal retirement consumption with a stochastic force of mortality 2012 Huaxiong Huang
Moshe A. Milevsky
Thomas S. Salisbury
+ Moment densities of super-Brownian motion, and a Harnack estimate for a class of X-harmonic functions 2012 Thomas S. Salisbury
A. Deniz Sezer
+ Non-Existence of Stabilizing Policies for the Critical Push-Pull Network and Generalizations 2012 Yoni Nazarathy
Leonardo Rojas‐Nandayapa
Thomas S. Salisbury
+ A combinatorial result with applications to self-interacting random walks 2011 Mark Holmes
Thomas S. Salisbury
+ Degenerate random environments 2011 Mark Holmes
Thomas S. Salisbury
+ Random walks in degenerate random environments 2011 Mark Holmes
Thomas S. Salisbury
+ A combinatorial result with applications to self-interacting random walks 2011 Mark Holmes
Thomas S. Salisbury
+ Blowup and Conditionings of $\psi$-super Brownian Exit Measures 2011 Siva Athreya
Thomas S. Salisbury
+ Random walks in degenerate random environments 2011 Mark Holmes
Thomas S. Salisbury
+ Degenerate random environments 2011 Mark Holmes
Thomas S. Salisbury
+ A combinatorial result with applications to self-interacting random walks 2011 Mark Holmes
Thomas S. Salisbury
+ Blowup and Conditionings of $ψ$-super Brownian Exit Measures 2011 Siva Athreya
Thomas S. Salisbury
+ PDF Chat A Different Perspective on Retirement Income Sustainability: <i>The Blueprint for a Ruin Contingent Life Annuity (RCLA)</i> 2009 Huaxiong Huang
Moshe A. Milevsky
Thomas S. Salisbury
+ PDF Chat Non-degenerate conditionings of the exit measures of super Brownian motion 2000 Thomas S. Salisbury
John Verzani
+ PDF Chat On the conditioned exit measures of super Brownian motion 1999 Thomas S. Salisbury
John Verzani
+ On minimal parabolic functions and time-homogeneous parabolic ℎ-transforms 1999 Krzysztof Burdzy
Thomas S. Salisbury
+ Non-degenerate conditionings of the exit measures of super-Brownian motion 1998 Thomas S. Salisbury
John Verzani
+ On the conditioned exit measures of super-Brownian motion 1998 Thomas S. Salisbury
John Verzani
+ On the conditioned exit measures of super-Brownian motion 1998 Thomas S. Salisbury
John Verzani
+ Non-degenerate conditionings of the exit measures of super-Brownian motion 1998 Thomas S. Salisbury
John Verzani
+ On minimal parabolic functions and time-homogeneous parabolic h-transforms 1997 Krzysztof Burdzy
Thomas S. Salisbury
+ On minimal parabolic functions and time-homogeneous parabolic h-transforms 1997 Krzysztof Burdzy
Thomas S. Salisbury
+ Energy, and Intersections of Markov Chains 1996 Thomas S. Salisbury
+ PDF Chat Martin boundaries of sectorial domains 1993 M. Cranston
Thomas S. Salisbury
+ PDF Chat 2D Brownian motion in a system of traps: application of conformal transformations 1992 Krzysztof Burdzy
R Hoyst
Thomas S. Salisbury
+ Book Review: Multidimensional Brownian excursions and potential theory 1989 Thomas S. Salisbury
+ PDF Chat Connecting Brownian Paths 1988 Burgess Davis
Thomas S. Salisbury
+ PDF Chat On the Itô excursion process 1986 Thomas S. Salisbury
+ PDF Chat A Martin Boundary in the Plane 1986 Thomas S. Salisbury
+ PDF Chat A Martin boundary in the plane 1986 Thomas S. Salisbury
+ An Increasing Diffusion 1986 Thomas S. Salisbury
+ Construction of strong Markov processes through excursions, and a related Martin boundary 1983 Thomas S. Salisbury
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Degenerate random environments 2012 Mark Holmes
Thomas S. Salisbury
8
+ PDF Chat Annuitization and asset allocation 2007 Moshe A. Milevsky
Virginia R. Young
8
+ PDF Chat Forward Clusters for Degenerate Random Environments 2016 Mark Holmes
Thomas S. Salisbury
7
+ PDF Chat Oriented Percolation in Two Dimensions 1984 Richard Durrett
7
+ Random walks in degenerate random environments 2011 Mark Holmes
Thomas S. Salisbury
7
+ PDF Chat ACTUARIAL FAIRNESS AND SOLIDARITY IN POOLED ANNUITY FUNDS 2014 Catherine Donnelly
6
+ PDF Chat The lifetime of conditioned Brownian motion 1983 M. Cranston
Terry R. McConnell
6
+ PDF Chat Random Walks in Degenerate Random Environments 2013 Mark Holmes
Thomas S. Salisbury
6
+ Estimates of the site percolation probability exponents for some directed lattices 1983 K De’Bell
J W Essam
5
+ Improved upper bounds for the critical probability of oriented percolation in two dimensions 1994 Paul Balister
Béla Bollobás
Alan Stacey
5
+ PDF Chat Series expansions of the percolation probability on the directed triangular lattice 1996 Iwan Jensen
A J Guttmann
5
+ Conditions for ballisticity and invariance principle for random walk in non-elliptic random environment 2017 Mark Holmes
Thomas S. Salisbury
5
+ PDF Chat Conditional gauge and potential theory for the Schrödinger operator 1988 M. Cranston
Eugene B. Fabes
Z. Zhao
4
+ PDF Chat Lifetime of conditioned Brownian motion in Lipschitz domains 1985 M. Cranston
4
+ PDF Chat On the conditioned exit measures of super Brownian motion 1999 Thomas S. Salisbury
John Verzani
4
+ PDF Chat A Law of Large Numbers for Random Walks in Random Environment 1999 Alain‐Sol Sznitman
Martin Zerner
3
+ PDF Chat Random Walks in Random Environment 2009 Ofer Zeitouni
3
+ PDF Chat On extreme X-harmonic functions 2006 E. B. Dynkin
3
+ PDF Chat Directed Percolation and Random Walk 2002 Geoffrey Grimmett
Philipp Hiemer
3
+ PDF Chat Conditioned super-Brownian motion 1993 Ludger Overbeck
3
+ PDF Chat Hitting probabilities and potential theory for the brownian path-valued process 1994 Jean‐François Le Gall
3
+ Conditioned superprocesses and a semilinear heat equation 1993 Alison Etheridge
3
+ PDF Chat Hölder domains and the boundary Harnack principle 1991 Rodrigo Bañuelos
Richard F. Bass
Krzysztof Burdzy
3
+ An Introduction to Branching Measure-Valued Processes 1994 E. B. Dynkin
3
+ PDF Chat Pathwise construction of additive H-transforms of super-Brownian motion 1994 Ludger Overbeck
3
+ Random Walks and Random Environments: Volume 1: Random Walks 1995 P. M. Lee
3
+ PDF Chat Optimal retirement income tontines 2015 Moshe A. Milevsky
Thomas S. Salisbury
3
+ Measure-valued Markov branching processes conditioned on non-extinction 1990 Steven N. Evans
Edwin Perkins
3
+ PDF Chat A note on $X$-harmonic functions 2006 E. B. Dynkin
3
+ PDF Chat A probabilistic approach to one class of nonlinear differential equations 1991 E. B. Dynkin
3
+ Two representations of a conditioned superprocess 1993 Steven N. Evans
3
+ PDF Chat Optimal retirement consumption with a stochastic force of mortality 2012 Huaxiong Huang
Moshe A. Milevsky
Thomas S. Salisbury
3
+ PDF Chat A backward Harnack inequality and Fatou theorem for nonnegative solutions of parabolic equations 1986 Eugene B. Fabes
Nicola Garofalo
Sandro Salsa
2
+ Boundary behavior of harmonic functions in non-tangentially accessible domains 1982 David Jerison
Carlos E. Kenig
2
+ Non-negative solutions of linear parabolic equations 1968 D. G. Aronson
2
+ PDF Chat On the variances of occupation times of conditioned Brownian motion 1996 Biao Zhang
2
+ Probability Theory and Combinatorial Optimization 1997 John Steele
2
+ PDF Chat Conditional brownian motion and the boundary limits of harmonic functions 1957 J. L. Doob
2
+ PDF Chat Solutions of nonlinear differential equations on a Riemannian manifold and their trace on the Martin boundary 1998 E. B. Dynkin
С. Е. Кузнецов
2
+ Diffusions, Superdiffusions and Partial Differential Equations 2002 E. B. Dynkin
2
+ A note on correlations in randomly oriented graphs 2009 Svante Linusson
2
+ PDF Chat Effective Polynomial Ballisticity Conditions for Random Walk in Random Environment 2013 Noam Berger
Alexander Drewitz
Alejandro F. Ramı́rez
2
+ PDF Chat The zero-one law for planar random walks in i.i.d. random environments revisited 2007 Martin Zerner
2
+ Probability with martingales 1992 David N. Williams
2
+ PDF Chat A conformal inequality related to the conditional gauge theorem 1990 Terry R. McConnell
2
+ Conditioned Brownian motion in planar domains 1988 Burgess Davis
2
+ On the term structure of interest rates 1978 L.Uri Dothan
2
+ PDF Chat Ellipticity criteria for ballistic behavior of random walks in random environment 2013 David Campos
Alejandro F. Ramı́rez
2
+ A decomposition of the (1 + β)-superprocess conditioned on survival 2003 Alison Etheridge
David R.E. Williams
2
+ PDF Chat On a Class Of Transient Random Walks in Random Environment 2001 Alain‐Sol Sznitman
2