Zachary Kenton

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat On scalable oversight with weak LLMs judging strong LLMs 2024 Zachary Kenton
Noah Y. Siegel
János Kramár
Jonah Brown-Cohen
Samuel Albanie
Jannis Bulian
Rishabh Agarwal
David Lindner
Yunhao Tang
Noah D. Goodman
+ PDF Chat The Ethics of Advanced AI Assistants 2024 Iason Gabriel
Arianna Manzini
Geoff Keeling
Lisa Anne Hendricks
Verena Rieser
Hasan Iqbal
Nenad Tomašev
Sofia Ira Ktena
Zachary Kenton
M. Balsa Rodríguez
+ PDF Chat A Mechanism-Based Approach to Mitigating Harms from Persuasive Generative AI 2024 Seliem El-Sayed
Canfer Akbulut
Amanda McCroskery
Geoff Keeling
Zachary Kenton
Zaria Jalan
Nahema Marchal
Arianna Manzini
Toby Shevlane
Shannon Vallor
+ Explaining grokking through circuit efficiency 2023 Vikrant Varma
Rohin Shah
Zachary Kenton
János Kramár
Ramana Kumar
+ Challenges with unsupervised LLM knowledge discovery 2023 Sebastian Farquhar
Vikrant Varma
Zachary Kenton
Johannes Gasteiger
Vladimir Mikulik
Rohin Shah
+ Safe Deep RL in 3D Environments using Human Feedback 2022 Matthew Rahtz
Vikrant Varma
Ramana Kumar
Zachary Kenton
Shane Legg
Jan Leike
+ Discovering Agents 2022 Zachary Kenton
Ramana Kumar
Sebastian Farquhar
Jonathan G. Richens
Matt MacDermott
Tom Everitt
+ Alignment of Language Agents 2021 Zachary Kenton
Tom Everitt
Laura Weidinger
Iason Gabriel
Vladimir Mikulik
Geoffrey Irving
+ PDF Chat Imitating Interactive Intelligence 2020 Josh Abramson
Arun Ahuja
Iain Barr
Arthur Brussee
Federico Carnevale
Mary Cassin
Rachita Chhaparia
Stephen R. L. Clark
Bogdan Damoc
Andrew Dudzik
+ Imitating Interactive Intelligence 2020 Josh Abramson
Arun Ahuja
Iain Barr
Arthur Brussee
Federico Carnevale
Mary Cassin
Rachita Chhaparia
Stephen Clark
Bogdan Damoc
Andrew Dudzik
+ Generalizing from a few environments in safety-critical reinforcement learning 2019 Zachary Kenton
Angelos Filos
Owain Evans
Yarin Gal
+ A Systematic Comparison of Bayesian Deep Learning Robustness in Diabetic Retinopathy Tasks 2019 Angelos Filos
Sebastian Farquhar
Aidan N. Gomez
Tim G. J. Rudner
Zachary Kenton
Lewis Smith
Milad Alizadeh
Arnoud de Kroon
Yarin Gal
+ DNN's Sharpest Directions Along the SGD Trajectory. 2018 Stanisław Jastrzȩbski
Zachary Kenton
Nicolas Ballas
Asja Fischer
Yoshua Bengio
Amos Storkey
+ On the Relation Between the Sharpest Directions of DNN Loss and the SGD Step Length 2018 Stanisław Jastrzȩbski
Zachary Kenton
Nicolas Ballas
Asja Fischer
Yoshua Bengio
Amos Storkey
+ Three Factors Influencing Minima in SGD 2017 Stanisław Jastrzȩbski
Zachary Kenton
Devansh Arpit
Nicolas Ballas
Asja Fischer
Yoshua Bengio
Amos Storkey
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
3
+ Asynchronous Methods for Deep Reinforcement Learning 2016 Volodymyr Mnih
Adrià Puigdomènech Badia
Mehdi Mirza
Alex Graves
Tim Harley
Timothy Lillicrap
David Silver
Koray Kavukcuoglu
2
+ Language Models are Few-Shot Learners 2020 T. B. Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
Prafulla Dhariwal
Arvind Neelakantan
Pranav Shyam
Girish Sastry
Amanda Askell
2
+ Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning 2015 Yarin Gal
Zoubin Ghahramani
2
+ Very Deep Convolutional Networks for Large-Scale Image Recognition 2014 Karen Simonyan
Andrew Zisserman
2
+ Adam: A Method for Stochastic Optimization 2014 Diederik P. Kingma
Jimmy Ba
2
+ Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms 2017 Xiao Han
Kashif Rasul
Roland Vollgraf
2
+ Stochastic gradient descent performs variational inference, converges to limit cycles for deep networks 2017 Pratik Chaudhari
Stefano Soatto
2
+ Uncertainty-Aware Reinforcement Learning for Collision Avoidance 2017 Gregory Kahn
Adam Villaflor
Vitchyr H. Pong
Pieter Abbeel
Sergey Levine
2
+ Concrete Problems in AI Safety 2016 Dario Amodei
Chris Olah
Jacob Steinhardt
Paul F. Christiano
John Schulman
Dan Mané
2
+ Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles 2016 Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
2
+ IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures 2018 Lasse Espeholt
Hubert Soyer
Rémi Munos
Karen Simonyan
Volodymir Mnih
Tom Ward
Yotam Doron
Vlad Firoiu
Tim Harley
Iain Dunning
2
+ High-dimensional dynamics of generalization error in neural networks 2017 Madhu Advani
Andrew Saxe
2
+ AI Safety Gridworlds 2017 Jan Leike
Miljan Martic
Victoria Krakovna
Pedro A. Ortega
Tom Everitt
Andrew Lefrancq
Laurent Orseau
Shane Legg
2
+ Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation 2016 Konstantinos Kamnitsas
Christian Ledig
Virginia Newcombe
Joanna Simpson
Andrew D. Kane
David Menon
Daniel Rueckert
Ben Glocker
1
+ (Non-) asymptotic properties of Stochastic Gradient Langevin Dynamics 2015 Sebastian J. Vollmer
Konstantinos C. Zygalakis
and Yee Whye Teh
1
+ An iteration method for the solution of the eigenvalue problem of linear differential and integral operators 1950 Cornelius Lanczos
1
+ Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks 2017 Chelsea Finn
Pieter Abbeel
Sergey Levine
1
+ Bayesian Learning via Stochastic Gradient Langevin Dynamics 2011 Max Welling
Yee Whye Teh
1
+ Bayesian SegNet: Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures for Scene Understanding 2017 Alex Kendall
Vijay Badrinarayanan
Roberto Cipolla
1
+ Generating Sequences With Recurrent Neural Networks 2013 Alex Graves
1
+ Third-Person Imitation Learning 2017 Bradly C. Stadie
Pieter Abbeel
Ilya Sutskever
1
+ Opening the Black Box of Deep Neural Networks via Information 2017 Ravid Shwartz-Ziv
Naftali Tishby
1
+ What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? 2017 Alex Kendall
Yarin Gal
1
+ PDF Chat Embodied Question Answering 2018 Abhishek Das
Samyak Datta
Georgia Gkioxari
Stefan Lee
Devi Parikh
Dhruv Batra
1
+ In-Datacenter Performance Analysis of a Tensor Processing Unit 2017 Norman P. Jouppi
Cliff Young
Nishant Patil
David A. Patterson
Gaurav Agrawal
Raminder Bajwa
S. C. Bates
Suresh Bhatia
Nan Boden
Al Borchers
1
+ Deep Relaxation: partial differential equations for optimizing deep neural networks 2017 Pratik Chaudhari
Adam M. Oberman
Stanley Osher
Stefano Soatto
Guillaume Carlier
1
+ Train longer, generalize better: closing the generalization gap in large batch training of neural networks 2017 Elad Hoffer
Itay Hubara
Daniel Soudry
1
+ Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour 2017 Priya Goyal
Piotr Dollár
Ross Girshick
Pieter Noordhuis
Lukasz Wesolowski
Aapo Kyrola
Andrew Tulloch
Yangqing Jia
Kaiming He
1
+ Deal or No Deal? End-to-End Learning for Negotiation Dialogues 2017 Mike Lewis
Denis Yarats
Yann Dauphin
Devi Parikh
Dhruv Batra
1
+ Bayesian Sampling Using Stochastic Gradient Thermostats 2014 Nan Ding
Youhan Fang
Ryan Babbush
Changyou Chen
Robert D. Skeel
Hartmut Neven
1
+ RL$^2$: Fast Reinforcement Learning via Slow Reinforcement Learning 2016 Yan Duan
John Schulman
Xi Chen
Peter L. Bartlett
Ilya Sutskever
Pieter Abbeel
1
+ A Connection between Generative Adversarial Networks, Inverse Reinforcement Learning, and Energy-Based Models 2016 Chelsea Finn
Paul F. Christiano
Pieter Abbeel
Sergey Levine
1
+ Identifying and attacking the saddle point problem in high-dimensional non-convex optimization 2014 Yann Dauphin
Razvan Pascanu
Çaǧlar Gülçehre
Kyunghyun Cho
Surya Ganguli
Yoshua Bengio
1
+ Empirical Evaluation of Rectified Activations in Convolutional Network 2015 Bing Xu
Naiyan Wang
Tianqi Chen
Mu Li
1
+ PDF Chat Uncertainties in Parameters Estimated with Neural Networks: Application to Strong Gravitational Lensing 2017 Laurence Perreault-Levasseur
Yashar Hezaveh
Risa H. Wechsler
1
+ Combating Reinforcement Learning's Sisyphean Curse with Intrinsic Fear 2016 Zachary C. Lipton
Jianfeng Gao
Lihong Li
Jianshu Chen
Li Deng
1
+ Proximal Policy Optimization Algorithms 2017 John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
1
+ Deep Residual Networks and Weight Initialization 2017 Masato Taki
1
+ Towards Understanding Generalization of Deep Learning: Perspective of Loss Landscapes 2017 Lei Wu
Zhanxing Zhu
E Weinan
1
+ Singularity of the Hessian in Deep Learning. 2016 Levent Sagun
Léon Bottou
Yann LeCun
1
+ Three Factors Influencing Minima in SGD 2017 Stanisław Jastrzȩbski
Zachary Kenton
Devansh Arpit
Nicolas Ballas
Asja Fischer
Yoshua Bengio
Amos Storkey
1
+ Computing Machinery and Intelligence (1950) 2004 Alan Turing
1
+ Learning human behaviors from motion capture by adversarial imitation 2017 Josh Merel
Yuval Tassa
Dhruva Tb
Sriram Srinivasan
Jay Lemmon
Ziyu Wang
Greg Wayne
Nicolas Heess
1
+ Theory of Deep Learning III: explaining the non-overfitting puzzle 2017 Tomaso Poggio
Kenji Kawaguchi
Qianli Liao
Brando Miranda
Lorenzo Rosasco
Xavier Boix
Jack D. Hidary
H. N. Mhaskar
1
+ Flipout: Efficient Pseudo-Independent Weight Perturbations on Mini-Batches 2018 Yeming Wen
Paul Vicol
Jimmy Ba
Dustin Tran
Roger Grosse
1
+ Observational Learning by Reinforcement Learning 2017 Diana Borsa
Bilal Piot
Rémi Munos
Olivier Pietquin
1
+ The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation 2018 Miles Brundage
Shahar Avin
Jack Clark
Helen Toner
Peter Eckersley
Ben Garfinkel
Allan Dafoe
Paul Scharre
Thomas Zeitzoff
Bobby Filar
1
+ Hessian-based Analysis of Large Batch Training and Robustness to Adversaries 2018 Zhewei Yao
Amir Gholami
Qi Lei
Kurt Keutzer
Michael W. Mahoney
1
+ Grounded Language Learning in a Simulated 3D World 2017 Karl Moritz Hermann
Felix Hill
Simon Green
Fumin Wang
Ryan Faulkner
Hubert Soyer
David Szepesvari
Wojciech Marian Czarnecki
Max Jaderberg
Denis Teplyashin
1