Ankur Taly

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Sufficient Context: A New Lens on Retrieval Augmented Generation Systems 2024 Hailey Joren
Jianyi Zhang
Chun-Sung Ferng
Da-Cheng Juan
Ankur Taly
Cyrus Rashtchian
+ PDF Chat Grounding and Evaluation for Large Language Models: Practical Challenges and Lessons Learned (Survey) 2024 Krishnaram Kenthapadi
Mehrnoosh Sameki
Ankur Taly
+ PDF Chat Speculative RAG: Enhancing Retrieval Augmented Generation through Drafting 2024 Zilong Wang
Zifeng Wang
Long Tan Le
Huaixiu Zheng
Swaroop Mishra
Vinçent Pérot
Yuwei Zhang
Anush Mattapalli
Ankur Taly
Jingbo Shang
+ PDF Chat Which Pretrain Samples to Rehearse when Finetuning Pretrained Models? 2024 Andrew Bai
Chih‐Kuan Yeh
Cho‐Jui Hsieh
Ankur Taly
+ Identifying and Mitigating the Security Risks of Generative AI 2023 Clark Barrett
Brad Boyd
Elie Burzstein
Nicholas Carlini
Brad Chen
Jihye Choi
Amrita Roy Chowdhury
Mihai Christodorescu
Anupam Datta
Soheil Feizi
+ Identifying and Mitigating the Security Risks of Generative AI 2023 Clark Barrett
Brad Boyd
Elie Bursztein
Nicholas Carlini
Brad Chen
Jihye Choi
Amrita Roy Chowdhury
Mihai Christodorescu
Anupam Datta
Soheil Feizi
+ PDF Chat Identifying and Mitigating the Security Risks of Generative AI 2023 Clark Barrett
Brad Boyd
Elie Bursztein
Nicholas Carlini
Brad Chen
Jihye Choi
Amrita Roy Chowdhury
Mihai Christodorescu
Anupam Datta
Soheil Feizi
+ PDF Chat First is Better Than Last for Training Data Influence 2022 Chih‐Kuan Yeh
Ankur Taly
Mukund Sundararajan
Frederick Liu
Pradeep Ravikumar
+ Interpretable Mixture of Experts 2022 Aya Abdelsalam Ismail
Sercan Ö. Arık
Jinsung Yoon
Ankur Taly
Soheil Feizi
Tomas Pfister
+ First is Better Than Last for Language Data Influence 2022 Chih‐Kuan Yeh
Ankur Taly
Mukund Sundararajan
Frederick Liu
Pradeep Ravikumar
+ A Multistakeholder Approach Towards Evaluating AI Transparency Mechanisms 2021 Ana Lučić
Madhulika Srikumar
Umang Bhatt
Alice Xiang
Ankur Taly
Q. Vera Liao
Maarten de Rijke
+ PDF Chat Local Explanations Via Necessity and Sufficiency: Unifying Theory and Practice 2021 David Watson
Limor Gultchin
Ankur Taly
Luciano Floridi
+ Local Explanations via Necessity and Sufficiency: Unifying Theory and Practice 2021 David Watson
Limor Gultchin
Ankur Taly
Luciano Floridi
+ Explainable machine learning in deployment 2020 Umang Bhatt
Alice Xiang
Shubham Sharma
Adrian Weller
Ankur Taly
Yunhan Jia
Joydeep Ghosh
Ruchir Puri
José M. F. Moura
Peter Eckersley
+ PDF Chat The Explanation Game: Explaining Machine Learning Models Using Shapley Values 2020 Luke Merrick
Ankur Taly
+ PDF Chat Property Inference for Deep Neural Networks 2019 Divya Gopinath
Hayes Converse
Corina S. Păsăreanu
Ankur Taly
+ The Explanation Game: Explaining Machine Learning Models Using Shapley Values 2019 Luke Merrick
Ankur Taly
+ Explainable Machine Learning in Deployment 2019 Umang Bhatt
Alice Xiang
Shubham Sharma
Adrian Weller
Ankur Taly
Yunhan Jia
Joydeep Ghosh
Ruchir Puri
José M. F. Moura
Peter Eckersley
+ PDF Chat Using attribution to decode binding mechanism in neural network models for chemistry 2019 Kevin McCloskey
Ankur Taly
Federico Monti
Michael P. Brenner
Lucy J. Colwell
+ Finding Invariants in Deep Neural Networks. 2019 Divya Gopinath
Ankur Taly
Hayes Converse
Corina S. Păsăreanu
+ Property Inference for Deep Neural Networks 2019 Divya Gopinath
Hayes Converse
Corina S. Păsăreanu
Ankur Taly
+ Counterfactual Fairness in Text Classification through Robustness 2019 Sahaj Garg
Vincent Perot
Nicole Limtiaco
Ankur Taly
Ed H.
Alex Beutel
+ The Explanation Game: Explaining Machine Learning Models Using Shapley Values 2019 Luke Merrick
Ankur Taly
+ Explainable Machine Learning in Deployment 2019 Umang Bhatt
Alice Xiang
Shubham Sharma
Adrian Weller
Ankur Taly
Yunhan Jia
J. Ghosh
Ruchir Puri
José M. F. Moura
Peter Eckersley
+ Property Inference for Deep Neural Networks 2019 Divya Gopinath
Hayes Converse
Corina S. Păsăreanu
Ankur Taly
+ Counterfactual Fairness in Text Classification through Robustness 2018 Sahaj Garg
Vincent Perot
Nicole Limtiaco
Ankur Taly
Ed H.
Alex Beutel
+ Did the Model Understand the Question 2018 Pramod Kaushik Mudrakarta
Ankur Taly
Mukund Sundararajan
Kedar Dhamdhere
+ It was the training data pruning too! 2018 Pramod Kaushik Mudrakarta
Ankur Taly
Mukund Sundararajan
Kedar Dhamdhere
+ A Note about: Local Explanation Methods for Deep Neural Networks lack Sensitivity to Parameter Values 2018 Mukund Sundararajan
Ankur Taly
+ PDF Chat Did the Model Understand the Question? 2018 Pramod Kaushik Mudrakarta
Ankur Taly
Mukund Sundararajan
Kedar Dhamdhere
+ Counterfactual Fairness in Text Classification through Robustness 2018 Sahaj Garg
Vinçent Pérot
Nicole Limtiaco
Ankur Taly
Ed H.
Alex Beutel
+ Did the Model Understand the Question? 2018 Pramod Kaushik Mudrakarta
Ankur Taly
Mukund Sundararajan
Kedar Dhamdhere
+ Axiomatic Attribution for Deep Networks 2017 Mukund Sundararajan
Ankur Taly
Qiqi Yan
+ Axiomatic Attribution for Deep Networks 2017 Mukund Sundararajan
Ankur Taly
Qiqi Yan
+ Abductive Matching in Question Answering 2017 Kedar Dhamdhere
Kevin S. McCurley
Mukund Sundararajan
Ankur Taly
+ Distributed Authorization in Vanadium 2016 Andres Erbsen
Asim Shankar
Ankur Taly
+ PDF Chat Privacy, Discovery, and Authentication for the Internet of Things 2016 David J. Wu
Ankur Taly
Asim Shankar
Dan Boneh
+ PDF Chat Distributed Authorization in Vanadium 2016 Ankur Taly
Asim Shankar
+ Gradients of Counterfactuals 2016 Mukund Sundararajan
Ankur Taly
Qiqi Yan
+ Privacy, Discovery, and Authentication for the Internet of Things 2016 David J. Wu
Ankur Taly
Asim Shankar
Dan Boneh
+ Distributed Authorization in Vanadium 2016 Andres Erbsen
Asim Shankar
Ankur Taly
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps 2013 Karen Simonyan
Andrea Vedaldi
Andrew Zisserman
9
+ Not Just a Black Box: Learning Important Features Through Propagating Activation Differences 2016 Avanti Shrikumar
Peyton Greenside
А.В. Đ©Đ”Ń€Đ±ĐžĐœĐ°
Anshul Kundaje
7
+ A Unified Approach to Interpreting Model Predictions 2017 Scott Lundberg
Su‐In Lee
7
+ Axiomatic Attribution for Deep Networks 2017 Mukund Sundararajan
Ankur Taly
Qiqi Yan
7
+ Striving for Simplicity: The All Convolutional Net 2014 Jost Tobias Springenberg
Alexey Dosovitskiy
Thomas Brox
Martin Riedmiller
6
+ Learning Important Features Through Propagating Activation Differences 2017 Avanti Shrikumar
Peyton Greenside
Anshul Kundaje
6
+ Towards A Rigorous Science of Interpretable Machine Learning 2017 Finale Doshi‐Velez
Been Kim
6
+ Layer-wise Relevance Propagation for Neural Networks with Local Renormalization Layers 2016 Alexander Binder
Grégoire Montavon
Sebastian Bach
Klaus‐Robert MĂŒller
Wojciech Samek
5
+ How to Explain Individual Classification Decisions 2009 David Baehrens
Timon Schroeter
Stefan Harmeling
Motoaki Kawanabe
Katja Hansen
Klaus‐Robert MĂŒller
5
+ Axiomatic Attribution for Deep Networks 2017 Mukund Sundararajan
Ankur Taly
Qiqi Yan
5
+ PDF Chat Interpretable Explanations of Black Boxes by Meaningful Perturbation 2017 Ruth Fong
Andrea Vedaldi
4
+ PDF Chat Explaining Explanations in AI 2019 Brent Mittelstadt
Chris Russell
Sandra Wachter
4
+ Compositional Semantic Parsing on Semi-Structured Tables 2015 Panupong Pasupat
Percy Liang
4
+ Learning a Natural Language Interface with Neural Programmer 2016 Arvind Neelakantan
Quoc V. Le
Martı́n Abadi
Andrew McCallum
Dario Amodei
4
+ PDF Chat Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks 2017 Guy Katz
Clark Barrett
David L. Dill
Kyle D. Julian
Mykel J. Kochenderfer
3
+ Understanding Neural Networks Through Deep Visualization 2015 Jason Yosinski
Jeff Clune
Anh Mai Nguyen
Thomas J. Fuchs
Hod Lipson
3
+ Learning how to explain neural networks: PatternNet and PatternAttribution 2017 Pieter Jan Kindermans
Kristof T. SchĂŒtt
Maximilian Alber
K. MĂŒller
Dumitru Erhan
Been Kim
Sven DĂ€hne
3
+ PDF Chat Building high-level features using large scale unsupervised learning 2013 Quoc V. Le
3
+ PDF Chat A Survey of Methods for Explaining Black Box Models 2018 Riccardo Guidotti
Anna Monreale
Salvatore Ruggieri
Franco Turini
Fosca Giannotti
Dino Pedreschi
3
+ Distilling the Knowledge in a Neural Network 2015 Geoffrey E. Hinton
Oriol Vinyals
Jay B. Dean
3
+ Efficient Formal Safety Analysis of Neural Networks 2018 Shiqi Wang
Kexin Pei
Justin Whitehouse
Junfeng Yang
Suman Jana
3
+ Deep Neural Networks as 0-1 Mixed Integer Linear Programs: A Feasibility Study 2017 Matteo Fischetti
Jason Jo
3
+ Explaining and Harnessing Adversarial Examples 2014 Ian Goodfellow
Jonathon Shlens
Christian Szegedy
3
+ PDF Chat Red Teaming Language Models with Language Models 2022 Ethan Perez
Saffron Huang
Francis Song
Trevor Cai
Roman Ring
John Aslanides
Amelia Glaese
Nat McAleese
Geoffrey Irving
3
+ PDF Chat Actionable Recourse in Linear Classification 2019 Berk Ustun
Alexander Spangher
Yang Liu
3
+ How Important Is a Neuron 2018 Kedar Dhamdhere
Mukund Sundararajan
Qiqi Yan
3
+ Adversarial Machine Learning at Scale 2016 Alexey Kurakin
Ian Goodfellow
Samy Bengio
3
+ PDF Chat The mythos of model interpretability 2018 Zachary C. Lipton
3
+ Generating Natural Adversarial Examples 2017 Zhengli Zhao
Dheeru Dua
Sameer Singh
3
+ PDF Chat Understanding deep image representations by inverting them 2015 Aravindh Mahendran
Andrea Vedaldi
3
+ Explaining individual predictions when features are dependent: More accurate approximations to Shapley values 2019 Kjersti Aas
Martin Jullum
Anders LĂžland
3
+ PDF Chat Towards Evaluating the Robustness of Neural Networks 2017 Nicholas Carlini
David Wagner
3
+ Inverting Visual Representations with Convolutional Networks 2015 Alexey Dosovitskiy
Thomas Brox
3
+ PDF Chat The Limitations of Deep Learning in Adversarial Settings 2016 Nicolas Papernot
Patrick McDaniel
Somesh Jha
Matt Fredrikson
Z. Berkay Celik
Ananthram Swami
2
+ Explaining Deep Neural Networks with a Polynomial Time Algorithm for Shapley Values Approximation 2019 Marco Ancona
Cengiz Öztireli
Markus Groß
2
+ GLTR: Statistical Detection and Visualization of Generated Text 2019 Sebastian Gehrmann
Hendrik Strobelt
Alexander M. Rush
2
+ "Why Should I Trust You?": Explaining the Predictions of Any Classifier 2016 Marco TĂșlio Ribeiro
Sameer Singh
Carlos Guestrin
2
+ Neural Machine Translation by Jointly Learning to Align and Translate 2014 Dzmitry Bahdanau
Kyunghyun Cho
Yoshua Bengio
2
+ Statistics and Causal Inference 1986 Paul W. Holland
2
+ Data Squashing: Constructing Summary Data Sets 2002 William DuMouchel
2
+ BERTScore: Evaluating Text Generation with BERT 2019 Tianyi Zhang
Varsha Kishore
Felix Wu
Kilian Q. Weinberger
Yoav Artzi
2
+ Going Deeper with Convolutions 2014 Christian Szegedy
Wei Liu
Yangqing Jia
Pierre Sermanet
Scott Reed
Dragomir Anguelov
Dumitru Erhan
Vincent Vanhoucke
Andrew Rabinovich
2
+ An Analysis of Visual Question Answering Algorithms 2017 Kushal Kafle
Christopher Kanan
2
+ Formal Security Analysis of Neural Networks using Symbolic Intervals 2018 Shiqi Wang
Kexin Pei
Justin Whitehouse
Junfeng Yang
Suman Jana
2
+ Model-Agnostic Interpretability of Machine Learning 2016 Marco TĂșlio Ribeiro
Sameer Singh
Carlos Guestrin
2
+ PDF Chat Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy 1986 B. Efron
R. Tibshirani
2
+ It was the training data pruning too! 2018 Pramod Kaushik Mudrakarta
Ankur Taly
Mukund Sundararajan
Kedar Dhamdhere
2
+ PDF Chat Top-Down Neural Attention by Excitation Backprop 2017 Jianming Zhang
Sarah Adel Bargal
Zhe Lin
Jonathan Brandt
Xiaohui Shen
Stan Sclaroff
2
+ Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives 2018 Amit Dhurandhar
Pin‐Yu Chen
Ronny Luss
Chun‐Chen Tu
Paishun Ting
Karthikeyan Shanmugam
Payel Das
2
+ Towards Aggregating Weighted Feature Attributions 2019 Umang Bhatt
Pradeep Ravikumar
José M. F. Moura
2