Philipp Marquetand

Follow

Generating author description...

All published works
Action Title Year Authors
+ Transferability of atomic energies from alchemical decomposition 2024 Michael J. Sahre
Guido Falk von Rudorff
Philipp Marquetand
O. Anatole von Lilienfeld
+ Nonadiabatic Forward Flux Sampling for Excited-State Rare Events 2023 Madlen Maria Reiner
Brigitta Bachmair
Maximilian Xaver Tiefenbacher
Sebastian Mai
Leticia González
Philipp Marquetand
Christoph Dellago
+ Transferability of atomic energies from alchemical decomposition 2023 Michael J. Sahre
Guido Falk von Rudorff
Philipp Marquetand
O. Anatole von Lilienfeld
+ Long Lived Electronic Coherences in Molecular Wave Packets Probed with Pulse Shape Spectroscopy 2023 Brian Kaufman
Philipp Marquetand
Tamás Rozgonyi
Thomas Weinacht
+ PDF Chat Deep learning study of tyrosine reveals that roaming can lead to photodamage 2022 Julia Westermayr
Michael Gastegger
Dóra Vörös
Lisa Panzenboeck
Florian Joerg
Leticia González
Philipp Marquetand
+ PDF Chat Solving the electronic Schrödinger equation for multiple nuclear geometries with weight-sharing deep neural networks 2022 Michael Scherbela
Rafael Reisenhofer
Leon Gerard
Philipp Marquetand
Philipp Grohs
+ BuRNN: Buffer Region Neural Network Approach for Polarizable-Embedding Neural Network/Molecular Mechanics Simulations 2022 Bettina Lier
Peter Poliak
Philipp Marquetand
Julia Westermayr
Chris Oostenbrink
+ Gold-standard solutions to the Schrödinger equation using deep learning: How much physics do we need? 2022 Leon Gerard
Michael Scherbela
Philipp Marquetand
Philipp Grohs
+ Nonadiabatic forward flux sampling for excited-state rare events 2022 Madlen Maria Reiner
Brigitta Bachmair
Maximilian Xaver Tiefenbacher
Sebastian Mai
Leticia González
Philipp Marquetand
Christoph Dellago
+ Roaming leads to amino acid photodamage: A deep learning study of tyrosine. 2021 Julia Westermayr
Michael Gastegger
Dora Vörös
Lisa Panzenboeck
Florian Joerg
Leticia González
Philipp Marquetand
+ Solving the electronic Schrödinger equation for multiple nuclear geometries with weight-sharing deep neural networks. 2021 Michael Scherbela
Rafael Reisenhofer
Leon Gerard
Philipp Marquetand
Philipp Grohs
+ Solving the electronic Schrödinger equation for multiple nuclear geometries with weight-sharing deep neural networks 2021 Michael Scherbela
Rafael Reisenhofer
Leon Gerard
Philipp Marquetand
Philipp Grohs
+ Machine Learning for Electronically Excited States of Molecules 2020 Julia Westermayr
Philipp Marquetand
+ PDF Chat Deep learning for UV absorption spectra with SchNarc: First steps toward transferability in chemical compound space 2020 Julia Westermayr
Philipp Marquetand
+ Machine learning and excited-state molecular dynamics 2020 Julia Westermayr
Philipp Marquetand
+ Combining SchNet and SHARC: The SchNarc Machine Learning Approach for Excited-State Dynamics 2020 Julia Westermayr
Michael Gastegger
Philipp Marquetand
+ Neural networks and kernel ridge regression for excited states dynamics of CH<sub>2</sub>NH 2+ : From single-state to multi-state representations and multi-property machine learning models 2020 Julia Westermayr
Felix A. Faber
Anders S. Christensen
O. Anatole von Lilienfeld
Philipp Marquetand
+ PDF Chat Molecular Dynamics with Neural Network Potentials 2020 Michael Gastegger
Philipp Marquetand
+ Photoinduced ultrafast dynamics and control of chemical reactions: from quantum to classical dynamics 2020 Leticia González
Philipp Marquetand
+ PDF Chat Machine learning enables long time scale molecular photodynamics simulations 2019 Julia Westermayr
Michael Gastegger
Maximilian F. S. J. Menger
Sebastian Mai
Leticia González
Philipp Marquetand
+ PDF Chat wACSF—Weighted atom-centered symmetry functions as descriptors in machine learning potentials 2018 Michael Gastegger
Ludwig Schwiedrzik
Marius R. Bittermann
Florian Berzsenyi
Philipp Marquetand
+ Molecular Dynamics with Neural-Network Potentials 2018 Michael Gastegger
Philipp Marquetand
+ PDF Chat Molecular oxygen observed by direct photoproduction from carbon dioxide 2017 Seyedreza Larimian
Sonia Erattupuzha
Sebastian Mai
Philipp Marquetand
Leticia González
Andrius Baltuška
Markus Kitzler
Xinhua Xie
+ PDF Chat Ab initio molecular dynamics relaxation and intersystem crossing mechanisms of 5-azacytosine 2017 Antonio Carlos Borin
Sebastian Mai
Philipp Marquetand
Leticia González
+ PDF Chat Machine learning molecular dynamics for the simulation of infrared spectra 2017 Michael Gastegger
Jörg Behler
Philipp Marquetand
+ PDF Chat The DNA nucleobase thymine in motion – Intersystem crossing simulated with surface hopping 2016 Sebastian Mai
Martin Richter
Philipp Marquetand
Leticia González
+ PDF Chat Comparing the accuracy of high-dimensional neural network potentials and the systematic molecular fragmentation method: A benchmark study for all-trans alkanes 2016 Michael Gastegger
Clemens Kauffmann
Jörg Behler
Philipp Marquetand
+ PDF Chat Nonadiabatic dynamics and multiphoton resonances in strong-field molecular ionization with few-cycle laser pulses 2016 Vincent Tagliamonti
Péter Sándor
Arthur Zhao
Tamás Rozgonyi
Philipp Marquetand
Thomas Weinacht
+ PDF Chat Photoelectron spectra of 2-thiouracil, 4-thiouracil, and 2,4-dithiouracil 2016 Matthias Ruckenbauer
Sebastian Mai
Philipp Marquetand
Leticia González
+ PDF Chat Strong Field Molecular Ionization in the Impulsive Limit: Freezing Vibrations with Short Pulses 2016 Péter Sándor
Vincent Tagliamonti
Arthur Zhao
Tamás Rozgonyi
Matthias Ruckenbauer
Philipp Marquetand
Thomas Weinacht
+ PDF Chat Internal conversion and intersystem crossing pathways in UV excited, isolated uracils and their implications in prebiotic chemistry 2016 Hui Yu
José A. Sánchez-Rodríguez
Marvin Pollum
Carlos E. Crespo‐Hernández
Sebastian Mai
Philipp Marquetand
Leticia González
Susanne Ullrich
+ PDF Chat Additive polarizabilities in ionic liquids 2015 Carlos E. S. Bernardes
Karina Shimizu
José N. Canongia Lopes
Philipp Marquetand
Esther Heid
Othmar Steinhauser
Christian Schröder
+ PDF Chat A general method to describe intersystem crossing dynamics in trajectory surface hopping 2015 Sebastian Mai
Philipp Marquetand
Leticia González
+ PDF Chat Ultrafast Intersystem Crossing in SO2 and Nucleobases 2015 Sebastian Mai
Martin Richter
Philipp Marquetand
Leticia González
+ PDF Chat Perturbational treatment of spin-orbit coupling for generally applicable high-level multi-reference methods 2014 Sebastian Mai
Thomas Müller
Felix Plasser
Philipp Marquetand
Hans Lischka
Leticia González
+ PDF Chat Non-adiabatic and intersystem crossing dynamics in SO2. II. The role of triplet states in the bound state dynamics studied by surface-hopping simulations 2014 Sebastian Mai
Philipp Marquetand
Leticia González
+ PDF Chat Excitation of Nucleobases from a Computational Perspective II: Dynamics 2014 Sebastian Mai
Martin Richter
Philipp Marquetand
Leticia González
+ PDF Chat Ultrafast Intersystem Crossing in SO2 and Nucleobases 2014 Sebastian Mai
Martin Richter
Philipp Marquetand
Leticia González
+ PDF Chat Singlet and Triplet Excited‐State Dynamics Study of the Keto and Enol Tautomers of Cytosine 2013 Sebastian Mai
Philipp Marquetand
Martin Richter
Jesús González‐Vázquez
Leticia González
+ Non-adiabatic dynamics in SO2: II. The role of triplet states studied by surface-hopping simulations 2013 Sebastian Mai
Philipp Marquetand
Leticia González
+ PDF Chat Femtosecond Intersystem Crossing in the DNA Nucleobase Cytosine 2012 Martin Richter
Philipp Marquetand
Jesús González‐Vázquez
Ignacio R. Solá
Leticia González
+ PDF Chat Stark Control of a Chiral Fluoroethylene Derivative 2011 Daniel Kinzel
Philipp Marquetand
Leticia González
+ PDF Chat Nonadiabatic ab initio molecular dynamics including spin–orbit coupling and laser fields 2011 Philipp Marquetand
Martin Richter
Jesús González‐Vázquez
Ignacio R. Solá
Leticia González
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost 2017 Justin S. Smith
Olexandr Isayev
Adrián E. Roitberg
9
+ PDF Chat Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions 2019 Kristof T. Schütt
Michael Gastegger
Alexandre Tkatchenko
K. Müller
Reinhard J. Maurer
8
+ PDF Chat A general method to describe intersystem crossing dynamics in trajectory surface hopping 2015 Sebastian Mai
Philipp Marquetand
Leticia González
8
+ Machine Learning Force Fields: Construction, Validation, and Outlook 2016 Venkatesh Botu
Rohit Batra
James Chapman
Rampi Ramprasad
8
+ PDF Chat Machine learning molecular dynamics for the simulation of infrared spectra 2017 Michael Gastegger
Jörg Behler
Philipp Marquetand
8
+ PDF Chat Singlet and Triplet Excited‐State Dynamics Study of the Keto and Enol Tautomers of Cytosine 2013 Sebastian Mai
Philipp Marquetand
Martin Richter
Jesús González‐Vázquez
Leticia González
8
+ PDF Chat Nonadiabatic ab initio molecular dynamics including spin–orbit coupling and laser fields 2011 Philipp Marquetand
Martin Richter
Jesús González‐Vázquez
Ignacio R. Solá
Leticia González
7
+ PDF Chat Signatures of nonadiabatic<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mtext>O</mml:mtext><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>dissociation at Al(111): First-principles fewest-switches study 2010 Christian Carbogno
Jörg Behler
Karsten Reuter
Axel Groß
7
+ PDF Chat SchNetPack: A Deep Learning Toolbox For Atomistic Systems 2018 Kristof T. Schütt
Pan Kessel
Michael Gastegger
Kim A. Nicoli
Alexandre Tkatchenko
K. Müller
7
+ PDF Chat SchNet – A deep learning architecture for molecules and materials 2018 Kristof T. Schütt
Huziel E. Sauceda
Pieter-Jan Kindermans
Alexandre Tkatchenko
K. Müller
7
+ Combining SchNet and SHARC: The SchNarc Machine Learning Approach for Excited-State Dynamics 2020 Julia Westermayr
Michael Gastegger
Philipp Marquetand
7
+ PDF Chat Machine learning exciton dynamics 2016 Florian Häse
Stéphanie Valleau
Edward O. Pyzer‐Knapp
Alán Aspuru‐Guzik
7
+ PDF Chat Machine learning enables long time scale molecular photodynamics simulations 2019 Julia Westermayr
Michael Gastegger
Maximilian F. S. J. Menger
Sebastian Mai
Leticia González
Philipp Marquetand
7
+ PDF Chat Inclusion of Machine Learning Kernel Ridge Regression Potential Energy Surfaces in On-the-Fly Nonadiabatic Molecular Dynamics Simulation 2018 Deping Hu
Yu Xie
Xusong Li
Lingyue Li
Zhenggang Lan
6
+ PDF Chat Towards exact molecular dynamics simulations with machine-learned force fields 2018 Stefan Chmiela
Huziel E. Sauceda
Klaus‐Robert Müller
Alexandre Tkatchenko
6
+ PDF Chat Quantum-chemical insights from deep tensor neural networks 2017 Kristof T. Schütt
Farhad Arbabzadah
Stefan Chmiela
K. Müller
Alexandre Tkatchenko
6
+ PDF Chat Comparing the accuracy of high-dimensional neural network potentials and the systematic molecular fragmentation method: A benchmark study for all-trans alkanes 2016 Michael Gastegger
Clemens Kauffmann
Jörg Behler
Philipp Marquetand
6
+ PDF Chat Operators in quantum machine learning: Response properties in chemical space 2019 Anders S. Christensen
Felix A. Faber
O. Anatole von Lilienfeld
6
+ PDF Chat Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons 2010 Albert P. Bartók
M. C. Payne
Risi Kondor
Gábor Cśanyi
6
+ Machine Learning for Electronically Excited States of Molecules 2020 Julia Westermayr
Philipp Marquetand
6
+ PDF Chat Femtosecond Intersystem Crossing in the DNA Nucleobase Cytosine 2012 Martin Richter
Philipp Marquetand
Jesús González‐Vázquez
Ignacio R. Solá
Leticia González
6
+ PDF Chat Machine learning based interatomic potential for amorphous carbon 2017 Volker L. Deringer
Gábor Cśanyi
5
+ Machine learning and excited-state molecular dynamics 2020 Julia Westermayr
Philipp Marquetand
5
+ PDF Chat Nonadiabatic effects in the dissociation of oxygen molecules at the Al(111) surface 2008 Jörg Behler
Karsten Reuter
Matthias Scheffler
5
+ PDF Chat Efficient and accurate machine-learning interpolation of atomic energies in compositions with many species 2017 Nongnuch Artrith
Alexander Urban
Gerbrand Ceder
5
+ Neural networks and kernel ridge regression for excited states dynamics of CH<sub>2</sub>NH 2+ : From single-state to multi-state representations and multi-property machine learning models 2020 Julia Westermayr
Felix A. Faber
Anders S. Christensen
O. Anatole von Lilienfeld
Philipp Marquetand
5
+ Less is more: Sampling chemical space with active learning 2018 Justin S. Smith
Benjamin Nebgen
Nicholas Lubbers
Olexandr Isayev
Adrián E. Roitberg
4
+ PDF Chat Machine Learning for Quantum Mechanical Properties of Atoms in Molecules 2015 Matthias Rupp
Raghunathan Ramakrishnan
O. Anatole von Lilienfeld
4
+ PDF Chat Bayesian machine learning for quantum molecular dynamics 2019 Roman V. Krems
4
+ PDF Chat The TensorMol-0.1 model chemistry: a neural network augmented with long-range physics 2018 Kun Yao
John E. Herr
David W. Toth
Ryker Mckintyre
John Parkhill
4
+ PDF Chat Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error 2017 Felix A. Faber
Luke A. D. Hutchison
Bing Huang
Justin Gilmer
Samuel S. Schoenholz
George E. Dahl
Oriol Vinyals
Steven Kearnes
Patrick Riley
O. Anatole von Lilienfeld
4
+ PDF Chat <i>Ab initio</i> solution of the many-electron Schrödinger equation with deep neural networks 2020 David Pfau
James S. Spencer
Alexander Matthews
W. M. C. Foulkes
4
+ PDF Chat FCHL revisited: Faster and more accurate quantum machine learning 2020 Anders S. Christensen
Lars A. Bratholm
Felix A. Faber
O. Anatole von Lilienfeld
4
+ PDF Chat Automatic selection of atomic fingerprints and reference configurations for machine-learning potentials 2018 Giulio Imbalzano
Andrea Anelli
Daniele Giofré
Sinja Klees
Jörg Behler
Michele Ceriotti
4
+ Big Data Meets Quantum Chemistry Approximations: The Δ-Machine Learning Approach 2015 Raghunathan Ramakrishnan
Pavlo O. Dral
Matthias Rupp
O. Anatole von Lilienfeld
4
+ PDF Chat Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics 2018 Linfeng Zhang
Jiequn Han
Han Wang
Roberto Car
E Weinan
4
+ PDF Chat Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning 2012 Matthias Rupp
Alexandre Tkatchenko
Klaus‐Robert Müller
O. Anatole von Lilienfeld
4
+ PDF Chat Communication: Understanding molecular representations in machine learning: The role of uniqueness and target similarity 2016 Bing Huang
O. Anatole von Lilienfeld
4
+ Solving many-electron Schrödinger equation using deep neural networks 2019 Jiequn Han
Linfeng Zhang
E Weinan
4
+ PDF Chat Deep-neural-network solution of the electronic Schrödinger equation 2020 Jan Hermann
Zeno Schätzle
Frank Noé
4
+ PDF Chat Machine Learning a General-Purpose Interatomic Potential for Silicon 2018 Albert P. Bartók
James R. Kermode
Noam Bernstein
Gábor Csányi
3
+ PDF Chat Exploring chemical compound space with quantum-based machine learning 2020 O. Anatole von Lilienfeld
Klaus‐Robert Müller
Alexandre Tkatchenko
3
+ PDF Chat Metadynamics for training neural network model chemistries: A competitive assessment 2018 John E. Herr
Kun Yao
Ryker Mcintyre
David W. Toth
John Parkhill
3
+ DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics 2018 Han Wang
Linfeng Zhang
Jiequn Han
E Weinan
3
+ PDF Chat wACSF—Weighted atom-centered symmetry functions as descriptors in machine learning potentials 2018 Michael Gastegger
Ludwig Schwiedrzik
Marius R. Bittermann
Florian Berzsenyi
Philipp Marquetand
3
+ PDF Chat Bypassing the Kohn-Sham equations with machine learning 2017 Felix Brockherde
Leslie Vogt-Maranto
Li Li
Mark E. Tuckerman
Kieron Burke
Klaus‐Robert Müller
3
+ PDF Chat Machine learning of accurate energy-conserving molecular force fields 2017 Stefan Chmiela
Alexandre Tkatchenko
Huziel E. Sauceda
Igor Poltavsky
Kristof T. Schütt
Klaus‐Robert Müller
3
+ PDF Chat Operator Quantum Machine Learning: Navigating the Chemical Space of Response Properties 2019 Anders S. Christensen
O. Anatole von Lilienfeld
3
+ PDF Chat Accurate interatomic force fields via machine learning with covariant kernels 2017 Aldo Glielmo
Peter Sollich
Alessandro De Vita
3
+ PDF Chat Machine learning unifies the modeling of materials and molecules 2017 Albert P. Bartók
Sandip De
Carl Poelking
Noam Bernstein
James R. Kermode
Gábor Cśanyi
Michele Ceriotti
3