Timothy Lillicrap

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Can foundation models actively gather information in interactive environments to test hypotheses? 2024 Nan Rosemary Ke
Danny P. Sawyer
Hubert Soyer
Martin Engelcke
David Reichert
Drew A. Hudson
John Reid
Alexander Lerchner
Danilo Jimenez Rezende
Timothy Lillicrap
+ PDF Chat AndroidWorld: A Dynamic Benchmarking Environment for Autonomous Agents 2024 C. Rawles
Sarah Clinckemaillie
Yifan Chang
Jonathan Waltz
Gabrielle Lau
Marybeth Fair
Alice Li
William Bishop
Wei Li
Folawiyo Campbell-Ajala
+ PDF Chat Metacognitive Capabilities of LLMs: An Exploration in Mathematical Problem Solving 2024 Aniket Didolkar
Anirudh Goyal
Nan Rosemary Ke
Siyuan Guo
Michal Vaľko
Timothy Lillicrap
Danilo Jimenez Rezende
Yoshua Bengio
Michael C. Mozer
Sanjeev Arora
+ PDF Chat Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning 2024 Yuxi Xie
Anirudh Goyal
Wenyue Zheng
Min‐Yen Kan
Timothy Lillicrap
Kenji Kawaguchi
Michael Shieh
+ PDF Chat Mixture-of-Depths: Dynamically allocating compute in transformer-based language models 2024 David Raposo
Sam Ritter
Blake A. Richards
Timothy Lillicrap
Peter C. Humphreys
Adam Santoro
+ PDF Chat Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context 2024 Gemini Team
Machel Reid
Nikolay Savinov
Denis Teplyashin
Dmitry
Lepikhin
Timothy Lillicrap
Jean-baptiste Alayrac
Radu Soricut
Angeliki Lazaridou
+ Mastering Diverse Domains through World Models 2023 Danijar Hafner
Jurgis Pašukonis
Jimmy Ba
Timothy Lillicrap
+ Android in the Wild: A Large-Scale Dataset for Android Device Control 2023 C. Rawles
Alice Li
Daniel Rodríguez Rodríguez
Oriana Riva
Timothy Lillicrap
+ Gemini: A Family of Highly Capable Multimodal Models 2023 Gemini Team
Rohan Anil
Sebastian Borgeaud
Jean-Baptiste Alayrac
Jiahui Yu
Radu Soricut
Johan Schalkwyk
Andrew M. Dai
Anja Hauth
Katie Millican
+ Equilibrium Aggregation: Encoding Sets via Optimization 2022 Sergey Bartunov
Fabian B. Fuchs
Timothy Lillicrap
+ Retrieval-Augmented Reinforcement Learning 2022 Anirudh Goyal
Abram L. Friesen
Andrea Banino
Théophane Weber
Nan Rosemary Ke
Adrià Puigdomènech Badia
Arthur Guez
Mehdi Mirza
Peter C. Humphreys
Ksenia Konyushkova
+ A data-driven approach for learning to control computers 2022 Peter C. Humphreys
David Raposo
Toby Pohlen
Gregory Thornton
Rachita Chhaparia
Alistair Muldal
Josh Abramson
Petko Georgiev
Alex Goldin
Adam Santoro
+ Intra-agent speech permits zero-shot task acquisition 2022 Yan Chen
Federico Carnevale
Petko Georgiev
Adam Santoro
Aurelia Guy
Alistair Muldal
Chia‐Chun Hung
Josh Abramson
Timothy Lillicrap
Gregory Wayne
+ Evaluating Multimodal Interactive Agents 2022 Josh Abramson
Arun Ahuja
Federico Carnevale
Petko Georgiev
Alex Goldin
Alden Hung
Jessica Landon
Timothy Lillicrap
Alistair Muldal
Blake A. Richards
+ Large-Scale Retrieval for Reinforcement Learning 2022 Peter C. Humphreys
Arthur Guez
Olivier Tieleman
Laurent Sifre
Théophane Weber
Timothy Lillicrap
+ Toward Next-Generation Artificial Intelligence: Catalyzing the NeuroAI Revolution 2022 Anthony M. Zador
Blake A. Richards
Bence P. Ölveczky
G. Sean Escola
Yoshua Bengio
Kwabena Boahen
Matthew Botvinick
Dmitri B. Chklovskii
Anne K. Churchland
Claudia Clopath
+ Evaluating Long-Term Memory in 3D Mazes 2022 Jurgis Pašukonis
Timothy Lillicrap
Danijar Hafner
+ Improving Multimodal Interactive Agents with Reinforcement Learning from Human Feedback 2022 Josh Abramson
Arun Ahuja
Federico Carnevale
Petko Georgiev
Alex Goldin
Alden Hung
Jessica Landon
Jirka Lhotka
Timothy Lillicrap
Alistair Muldal
+ PDF Chat Creating Multimodal Interactive Agents with Imitation and Self-Supervised Learning 2021 DeepMind Interactive Agents Team
Josh Abramson
Arun Ahuja
Arthur Brussee
Federico Carnevale
Mary Cassin
Felix Fischer
Petko Georgiev
Alex Goldin
Tim Harley
+ Towards Biologically Plausible Convolutional Networks 2021 Roman Pogodin
Yash Mehta
Timothy Lillicrap
Peter E. Latham
+ Symbolic Behaviour in Artificial Intelligence 2021 Adam Santoro
Andrew K. Lampinen
Kory W. Mathewson
Timothy Lillicrap
David Raposo
+ Creating Multimodal Interactive Agents with Imitation and Self-Supervised Learning 2021 DeepMind Interactive Agents Team
Josh Abramson
Arun Ahuja
Arthur Brussee
Federico Carnevale
Mary Cassin
Felix R. Fischer
Petko Georgiev
Alex Goldin
Mansi Gupta
+ Symbolic Behaviour in Artificial Intelligence 2021 Adam Santoro
Andrew K. Lampinen
Kory W. Mathewson
Timothy Lillicrap
David Raposo
+ Towards Biologically Plausible Convolutional Networks 2021 Roman Pogodin
Yash Mehta
Timothy Lillicrap
Peter E. Latham
+ PDF Chat Mastering Atari, Go, chess and shogi by planning with a learned model 2020 Julian Schrittwieser
Ioannis Antonoglou
Thomas Hubert
Karen Simonyan
Laurent Sifre
Simon Schmitt
Arthur Guez
Edward Lockhart
Demis Hassabis
Thore Graepel
+ PDF Chat Imitating Interactive Intelligence 2020 Josh Abramson
Arun Ahuja
Iain Barr
Arthur Brussee
Federico Carnevale
Mary Cassin
Rachita Chhaparia
Stephen R. L. Clark
Bogdan Damoc
Andrew Dudzik
+ Mastering Atari with Discrete World Models 2020 Danijar Hafner
Timothy Lillicrap
Mohammad Norouzi
Jimmy Ba
+ Beyond Tabula-Rasa: a Modular Reinforcement Learning Approach for Physically Embedded 3D Sokoban. 2020 Péter Karkus
Mehdi Mirza
Arthur Guez
Andrew Jaegle
Timothy Lillicrap
Lars Buesing
Nicolas Heess
Théophane Weber
+ PDF Chat dm_control: Software and tasks for continuous control 2020 Saran Tunyasuvunakool
Alistair Muldal
Yotam Doron
Siqi Liu
Steven Bohez
Josh Merel
Tom Erez
Timothy Lillicrap
Nicolas Heess
Yuval Tassa
+ Physically Embedded Planning Problems: New Challenges for Reinforcement Learning 2020 Mehdi Mirza
Andrew Jaegle
Jonathan J. Hunt
Arthur Guez
Saran Tunyasuvunakool
Alistair Muldal
Théophane Weber
Péter Karkus
Sébastien Racanière
Lars Buesing
+ Training Generative Adversarial Networks by Solving Ordinary Differential Equations 2020 Chongli Qin
Yan Wu
Jost Tobias Springenberg
Andrew Brock
Jeff Donahue
Timothy Lillicrap
Pushmeet Kohli
+ Imitating Interactive Intelligence 2020 Josh Abramson
Arun Ahuja
Iain Barr
Arthur Brussee
Federico Carnevale
Mary Cassin
Rachita Chhaparia
Stephen Clark
Bogdan Damoc
Andrew Dudzik
+ Mastering Atari with Discrete World Models 2020 Danijar Hafner
Timothy Lillicrap
Mohammad Norouzi
Jimmy Ba
+ Beyond Tabula-Rasa: a Modular Reinforcement Learning Approach for Physically Embedded 3D Sokoban 2020 Péter Karkus
Mehdi Mirza
Arthur Guez
Andrew Jaegle
Timothy Lillicrap
Lars Buesing
Nicolas Heess
Théophane Weber
+ Dream to Control: Learning Behaviors by Latent Imagination. 2019 Danijar Hafner
Timothy Lillicrap
Jimmy Ba
Mohammad Norouzi
+ PDF Chat Optimizing agent behavior over long time scales by transporting value 2019 Chia-Chun Hung
Timothy Lillicrap
Josh Abramson
Yan Wu
Mehdi Mirza
Federico Carnevale
Arun Ahuja
Greg Wayne
+ Compressive Transformers for Long-Range Sequence Modelling 2019 Jack W. Rae
Anna Potapenko
Siddhant M. Jayakumar
Timothy Lillicrap
+ What does it mean to understand a neural network 2019 Timothy Lillicrap
Konrad P. Körding
+ Meta-Learning Neural Bloom Filters 2019 Jack W. Rae
Sergey Bartunov
Timothy Lillicrap
+ Using Weight Mirrors to Improve Feedback Alignment 2019 Mohamed Akrout
Collin Wilson
Peter C. Humphreys
Timothy Lillicrap
Douglas Tweed
+ An investigation of model-free planning 2019 Arthur Guez
Mehdi Mirza
Karol Gregor
Rishabh Kabra
Sébastien Racanière
Théophane Weber
David Raposo
Adam Santoro
Laurent Orseau
Tom Eccles
+ Learning to Make Analogies by Contrasting Abstract Relational Structure 2019 Felix Hill
Adam Santoro
David G. T. Barrett
Ari S. Morcos
Timothy Lillicrap
+ Deep Learning without Weight Transport 2019 Mohamed Akrout
Collin Wilson
Peter C. Humphreys
Timothy Lillicrap
Douglas Tweed
+ Is coding a relevant metaphor for building AI? A commentary on "Is coding a relevant metaphor for the brain?", by Romain Brette 2019 Adam Santoro
Felix Hill
David G. T. Barrett
David Raposo
Matthew Botvinick
Timothy Lillicrap
+ Deep Compressed Sensing 2019 Yan Wu
Mihaela Rosca
Timothy Lillicrap
+ Experience Replay for Continual Learning 2019 David Rolnick
Arun Ahuja
Jonathan Schwarz
Timothy Lillicrap
Gregory Wayne
+ Deep Learning without Weight Transport 2019 Mohamed Akrout
Collin Wilson
Peter C. Humphreys
Timothy Lillicrap
Douglas Tweed
+ Automated curricula through setter-solver interactions 2019 Sébastien Racanière
Andrew K. Lampinen
Adam Santoro
David Reichert
Vlad Firoiu
Timothy Lillicrap
+ Meta-Learning Deep Energy-Based Memory Models 2019 Sergey Bartunov
Jack W. Rae
Simon Osindero
Timothy Lillicrap
+ LOGAN: Latent Optimisation for Generative Adversarial Networks 2019 Yan Wu
Jeff Donahue
David Balduzzi
Karen Simonyan
Timothy Lillicrap
+ Dream to Control: Learning Behaviors by Latent Imagination 2019 Danijar Hafner
Timothy Lillicrap
Jimmy Ba
Mohammad Norouzi
+ Compressive Transformers for Long-Range Sequence Modelling 2019 Jack W. Rae
Anna Potapenko
Siddhant M. Jayakumar
Timothy Lillicrap
+ What does it mean to understand a neural network? 2019 Timothy Lillicrap
Konrad P. Körding
+ Meta-Learning Neural Bloom Filters 2019 Jack W. Rae
Sergey Bartunov
Timothy Lillicrap
+ An investigation of model-free planning 2019 Arthur Guez
Mehdi Mirza
Karol Gregor
Rishabh Kabra
Sébastien Racanière
Théophane Weber
David Raposo
Adam Santoro
Laurent Orseau
Tom Eccles
+ Entropic Policy Composition with Generalized Policy Improvement and Divergence Correction. 2018 Jonathan J. Hunt
André Barreto
Timothy Lillicrap
Nicolas Heess
+ Composing Entropic Policies using Divergence Correction. 2018 Jonathan J. Hunt
André Barreto
Timothy Lillicrap
Nicolas Heess
+ Learning Attractor Dynamics for Generative Memory 2018 Yan Wu
Gregory Wayne
Karol Gregor
Timothy Lillicrap
+ Learning Latent Dynamics for Planning from Pixels 2018 Danijar Hafner
Timothy Lillicrap
Ian Fischer
Ruben Villegas
David Ha
Honglak Lee
James Davidson
+ Optimizing Agent Behavior over Long Time Scales by Transporting Value 2018 Chia-Chun Hung
Timothy Lillicrap
Josh Abramson
Yan Wu
Mehdi Mirza
Federico Carnevale
Arun Ahuja
Greg Wayne
+ Episodic Curiosity through Reachability 2018 Nikolay Savinov
Anton Raichuk
Raphaël Marinier
Damien Vincent
Marc Pollefeys
Timothy Lillicrap
Sylvain Gelly
+ Reliable Uncertainty Estimates in Deep Neural Networks using Noise Contrastive Priors 2018 Danijar Hafner
Dustin Tran
Alex Irpan
Timothy Lillicrap
James Davidson
+ Relational recurrent neural networks 2018 Adam Santoro
Ryan Faulkner
David Raposo
Jack W. Rae
Mike Chrzanowski
Théophane Weber
Daan Wierstra
Oriol Vinyals
Razvan Pascanu
Timothy Lillicrap
+ The Kanerva Machine: A Generative Distributed Memory 2018 Yan Wu
Greg Wayne
Alex Graves
Timothy Lillicrap
+ Recall Traces: Backtracking Models for Efficient Reinforcement Learning 2018 Anirudh Goyal
Philémon Brakel
William Fedus
Soumye Singhal
Timothy Lillicrap
Sergey Levine
Hugo Larochelle
Yoshua Bengio
+ Fast Parametric Learning with Activation Memorization 2018 Jack W. Rae
Chris Dyer
Peter Dayan
Timothy Lillicrap
+ Distributed Distributional Deterministic Policy Gradients 2018 Gabriel Barth-Maron
Matthew W. Hoffman
David Budden
Will Dabney
Dan Horgan
Dhruva Tb
Alistair Muldal
Nicolas Heess
Timothy Lillicrap
+ DeepMind Control Suite 2018 Yuval Tassa
Yotam Doron
Alistair Muldal
Tom Erez
Yazhe Li
Diego de Las Casas
David Budden
Abbas Abdolmaleki
Josh Merel
Andrew Lefrancq
+ Unsupervised Predictive Memory in a Goal-Directed Agent 2018 Greg Wayne
Chia-Chun Hung
Amos David
Mehdi Mirza
Arun Ahuja
Agnieszka Grabska‐Barwińska
Jack W. Rae
Piotr Mirowski
Joel Z. Leibo
Adam Santoro
+ Distributed Distributional Deterministic Policy Gradients 2018 Gabriel Barth-Maron
Matthew W. Hoffman
David Budden
Will Dabney
Dan Horgan
Dhruva Tb
Alistair Muldal
Nicolas Heess
Timothy Lillicrap
+ Relational Deep Reinforcement Learning 2018 Vinícius Zambaldi
David Raposo
Adam Santoro
Victor Bapst
Yujia Li
I. Babuschkin
Karl Tuyls
David Reichert
Timothy Lillicrap
Edward Lockhart
+ Episodic Curiosity through Reachability 2018 Nikolay Savinov
Anton Raichuk
Raphaël Marinier
Damien Vincent
Marc Pollefeys
Timothy Lillicrap
Sylvain Gelly
+ Experience Replay for Continual Learning 2018 David Rolnick
Arun Ahuja
Jonathan Schwarz
Timothy Lillicrap
Greg Wayne
+ Learning Attractor Dynamics for Generative Memory 2018 Yue Wu
Greg Wayne
Karol Gregor
Timothy Lillicrap
+ Assessing the Scalability of Biologically-Motivated Deep Learning Algorithms and Architectures 2018 Sergey Bartunov
Adam Santoro
Blake A. Richards
Luke Marris
Geoffrey E. Hinton
Timothy Lillicrap
+ Measuring abstract reasoning in neural networks 2018 David G. T. Barrett
Felix Hill
Adam Santoro
Ari S. Morcos
Timothy Lillicrap
+ Noise Contrastive Priors for Functional Uncertainty 2018 Danijar Hafner
Dustin Tran
Timothy Lillicrap
Alex Irpan
James Davidson
+ The Kanerva Machine: A Generative Distributed Memory 2018 Yan Wu
Greg Wayne
Alex Graves
Timothy Lillicrap
+ Relational recurrent neural networks 2018 Adam Santoro
Ryan Faulkner
David Raposo
Jack W. Rae
Mike Chrzanowski
Théophane Weber
Daan Wierstra
Oriol Vinyals
Razvan Pascanu
Timothy Lillicrap
+ Recall Traces: Backtracking Models for Efficient Reinforcement Learning 2018 Anirudh Goyal
Philémon Brakel
William Fedus
Soumye Singhal
Timothy Lillicrap
Sergey Levine
Hugo Larochelle
Yoshua Bengio
+ Composing Entropic Policies using Divergence Correction 2018 Jonathan J. Hunt
André Sales Barreto
Timothy Lillicrap
Nicolas Heess
+ Learning Latent Dynamics for Planning from Pixels 2018 Danijar Hafner
Timothy Lillicrap
Ian Fischer
Ruben Villegas
David Ha
Honglak Lee
James Davidson
+ Optimizing Agent Behavior over Long Time Scales by Transporting Value 2018 Chia‐Chun Hung
Timothy Lillicrap
Josh Abramson
Yan Wu
Mehdi Mirza
Federico Carnevale
Arun Ahuja
Greg Wayne
+ Fast Parametric Learning with Activation Memorization 2018 Jack W. Rae
Chris Dyer
Peter Dayan
Timothy Lillicrap
+ Towards deep learning with segregated dendrites 2017 Jordan Guerguiev
Timothy Lillicrap
Blake A. Richards
+ A simple neural network module for relational reasoning 2017 Adam Santoro
David Raposo
David G. T. Barrett
Mateusz Malinowski
Razvan Pascanu
Peter Battaglia
Timothy Lillicrap
+ PDF Chat Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates 2017 Shixiang Gu
Ethan Holly
Timothy Lillicrap
Sergey Levine
+ Data-efficient Deep Reinforcement Learning for Dexterous Manipulation 2017 Ivaylo Popov
Nicolas Heess
Timothy Lillicrap
Roland Hafner
Gabriel Barth-Maron
Matej Vecerík
Thomas Lampe
Yuval Tassa
Tom Erez
Martin Riedmiller
+ Discovering objects and their relations from entangled scene representations 2017 David Raposo
Adam Santoro
David G. T. Barrett
Razvan Pascanu
Timothy Lillicrap
Peter Battaglia
+ Q-PrOP: Sample-efficient policy gradient with an off-policy critic 2017 Shixiang Gu
Timothy Lillicrap
Zoubin Ghahramani
Richard E. Turner
Sergey Levine
+ Generative Temporal Models with Memory 2017 Mevlana Gemici
Chia-Chun Hung
Adam Santoro
Greg Wayne
Shakir Mohamed
Danilo Jimenez Rezende
Amos David
Timothy Lillicrap
+ StarCraft II: A New Challenge for Reinforcement Learning 2017 Oriol Vinyals
Timo Ewalds
Sergey Bartunov
Petko Georgiev
Alexander Sasha Vezhnevets
Michelle Yeo
Alireza Makhzani
Heinrich Küttler
John Agapiou
Julian Schrittwieser
+ Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm 2017 David Silver
Thomas Hubert
Julian Schrittwieser
Ioannis Antonoglou
Matthew Lai
Arthur Guez
Marc Lanctot
Laurent Sifre
Dharshan Kumaran
Thore Graepel
+ Interpolated Policy Gradient: Merging On-Policy and Off-Policy Gradient Estimation for Deep Reinforcement Learning 2017 Shixiang Gu
Timothy Lillicrap
Zoubin Ghahramani
Richard E. Turner
Bernhard Schölkopf
Sergey Levine
+ A simple neural network module for relational reasoning 2017 Adam Santoro
David Raposo
David G. T. Barrett
Mateusz Malinowski
Razvan Pascanu
Peter Battaglia
Timothy Lillicrap
+ Data-efficient Deep Reinforcement Learning for Dexterous Manipulation 2017 Ivaylo Popov
Nicolas Heess
Timothy Lillicrap
Roland Hafner
Gabriel Barth-Maron
Matej Vecerík
Thomas Lampe
Yuval Tassa
Tom Erez
Martin Riedmiller
+ Discovering objects and their relations from entangled scene representations 2017 David Raposo
Adam Santoro
David M. Barrett
Razvan Pascanu
Timothy Lillicrap
Peter Battaglia
+ Matching networks for one shot learning 2016 Oriol Vinyals
Charles Blundell
Timothy Lillicrap
Koray Kavukcuoglu
Daan Wierstra
+ Learning to Learn for Global Optimization of Black Box Functions. 2016 Yutian Chen
Matthew W. Hoffman
Sergio Gómez Colmenarejo
Misha Denil
Timothy Lillicrap
Nando de Freitas
+ Learning to Learn without Gradient Descent by Gradient Descent 2016 Yutian Chen
Matthew W. Hoffman
Sergio Gómez Colmenarejo
Misha Denil
Timothy Lillicrap
Matt Botvinick
Nando de Freitas
+ Scaling Memory-Augmented Neural Networks with Sparse Reads and Writes 2016 Jack W. Rae
Jonathan J. Hunt
Tim Harley
Ivo Danihelka
Andrew Senior
Greg Wayne
Alex Graves
Timothy Lillicrap
+ Learning and Transfer of Modulated Locomotor Controllers 2016 Nicolas Heess
Gregory Wayne
Yuval Tassa
Timothy Lillicrap
Martin Riedmiller
David Silver
+ Biologically feasible deep learning with segregated dendrites 2016 Jordan Guergiuev
Timothy Lillicrap
Blake A. Richards
+ Towards deep learning with segregated dendrites 2016 Jordan Guergiuev
Timothy Lillicrap
Blake A. Richards
+ Deep learning with segregated dendrites 2016 Jordan Guergiuev
Timothy Lillicrap
Blake A. Richards
+ Continuous control with deep reinforcement learning 2016 Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
Nicolas Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
+ Matching Networks for One Shot Learning 2016 Oriol Vinyals
Charles Blundell
Timothy Lillicrap
Koray Kavukcuoglu
Daan Wierstra
+ One-shot Learning with Memory-Augmented Neural Networks 2016 Adam Santoro
Sergey Bartunov
Matthew Botvinick
Daan Wierstra
Timothy Lillicrap
+ Asynchronous Methods for Deep Reinforcement Learning 2016 Volodymyr Mnih
Adrià Puigdomènech Badia
Mehdi Mirza
Alex Graves
Timothy Lillicrap
Tim Harley
David Silver
Koray Kavukcuoglu
+ Learning to Learn without Gradient Descent by Gradient Descent 2016 Yutian Chen
Matthew W. Hoffman
Sergio Gómez Colmenarejo
Misha Denil
Timothy Lillicrap
Matt Botvinick
Nando de Freitas
+ Continuous Deep Q-Learning with Model-based Acceleration 2016 Shixiang Gu
Timothy Lillicrap
Ilya Sutskever
Sergey Levine
+ Q-Prop: Sample-Efficient Policy Gradient with An Off-Policy Critic 2016 Shixiang Gu
Timothy Lillicrap
Zoubin Ghahramani
Richard E. Turner
Sergey Levine
+ Deep Reinforcement Learning for Robotic Manipulation with Asynchronous Off-Policy Updates 2016 Shixiang Gu
Ethan Holly
Timothy Lillicrap
Sergey Levine
+ Asynchronous Methods for Deep Reinforcement Learning 2016 Volodymyr Mnih
Adrià Puigdomènech Badia
Mehdi Mirza
Alex Graves
Tim Harley
Timothy Lillicrap
David Silver
Koray Kavukcuoglu
+ One-shot Learning with Memory-Augmented Neural Networks 2016 Adam Santoro
Sergey Bartunov
Matthew Botvinick
Daan Wierstra
Timothy Lillicrap
+ Learning and Transfer of Modulated Locomotor Controllers 2016 Nicolas Heess
Greg Wayne
Yuval Tassa
Timothy Lillicrap
Martin Riedmiller
David Silver
+ Matching Networks for One Shot Learning 2016 Oriol Vinyals
Charles Blundell
Timothy Lillicrap
Koray Kavukcuoglu
Daan Wierstra
+ Scaling Memory-Augmented Neural Networks with Sparse Reads and Writes 2016 Jack W. Rae
Jonathan J. Hunt
Tim Harley
Ivo Danihelka
Andrew Senior
Greg Wayne
Alex Graves
Timothy Lillicrap
+ Towards deep learning with segregated dendrites 2016 Jordan Guergiuev
Timothy Lillicrap
Blake A. Richards
+ Learning continuous control policies by stochastic value gradients 2015 Nicolas Heess
Greg Wayne
David Silver
Timothy Lillicrap
Yuval Tassa
Tom Erez
+ Learning Continuous Control Policies by Stochastic Value Gradients 2015 Nicolas Heess
Greg Wayne
David Silver
Timothy Lillicrap
Yuval Tassa
Tom Erez
+ Continuous control with deep reinforcement learning 2015 Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
Nicolas Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
+ Towards Principled Unsupervised Learning 2015 Ilya Sutskever
Rafał Józefowicz
Karol Gregor
Danilo Jimenez Rezende
Timothy Lillicrap
Oriol Vinyals
+ Memory-based control with recurrent neural networks 2015 Nicolas Heess
Jonathan J. Hunt
Timothy Lillicrap
David Silver
+ Deep Reinforcement Learning in Large Discrete Action Spaces 2015 Gabriel Dulac-Arnold
Richard Evans
Hado van Hasselt
Peter Sunehag
Timothy Lillicrap
Jonathan J. Hunt
Timothy Mann
Théophane Weber
Thomas Degris
Ben Coppin
+ Random feedback weights support learning in deep neural networks 2014 Timothy Lillicrap
Daniel Cownden
Douglas Tweed
Colin J. Akerman
+ Random feedback weights support learning in deep neural networks 2014 Timothy Lillicrap
Daniel Cownden
Douglas Tweed
Colin J. Akerman
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Asynchronous Methods for Deep Reinforcement Learning 2016 Volodymyr Mnih
Adrià Puigdomènech Badia
Mehdi Mirza
Alex Graves
Tim Harley
Timothy Lillicrap
David Silver
Koray Kavukcuoglu
16
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
13
+ Continuous control with deep reinforcement learning 2015 Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
Nicolas Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
12
+ Adam: A Method for Stochastic Optimization 2014 Diederik P. Kingma
Jimmy Ba
12
+ Trust Region Policy Optimization 2015 John Schulman
Sergey Levine
Philipp Moritz
Michael I. Jordan
Pieter Abbeel
11
+ Imagination-Augmented Agents for Deep Reinforcement Learning 2017 Sébastien Racanière
Théophane Weber
David Reichert
Lars Buesing
Arthur Guez
Danilo Jimenez Rezende
Adrià Puigdomènech Badia
Oriol Vinyals
Nicolas Heess
Yujia Li
10
+ Neural Machine Translation by Jointly Learning to Align and Translate 2015 Dzmitry Bahdanau
Kyunghyun Cho
Yoshua Bengio
9
+ Stochastic Backpropagation and Approximate Inference in Deep Generative Models 2014 Danilo Jimenez Rezende
Shakir Mohamed
Daan Wierstra
9
+ Neural Turing Machines 2014 Alex Graves
Greg Wayne
Ivo Danihelka
9
+ Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift 2015 Sergey Ioffe
Christian Szegedy
9
+ PDF Chat The Arcade Learning Environment: An Evaluation Platform for General Agents 2013 Marc G. Bellemare
Yavar Naddaf
Joel Veness
Michael Bowling
9
+ IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures 2018 Lasse Espeholt
Hubert Soyer
Rémi Munos
Karen Simonyan
Volodymir Mnih
Tom Ward
Yotam Doron
Vlad Firoiu
Tim Harley
Iain Dunning
8
+ High-Dimensional Continuous Control Using Generalized Advantage Estimation 2015 John Schulman
Philipp Moritz
Sergey Levine
Michael I. Jordan
Pieter Abbeel
8
+ Proximal Policy Optimization Algorithms 2017 John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
7
+ Learning and Querying Fast Generative Models for Reinforcement Learning 2018 Lars Buesing
Théophane Weber
Sébastien Racanière
S. M. Ali Eslami
Danilo Jimenez Rezende
David Reichert
Fabio Viola
Frederic Besse
Karol Gregor
Demis Hassabis
7
+ Value Prediction Network 2017 Junhyuk Oh
Satinder Singh
Honglak Lee
7
+ End-to-End Training of Deep Visuomotor Policies 2015 Sergey Levine
Chelsea Finn
Trevor Darrell
Pieter Abbeel
7
+ Learning continuous control policies by stochastic value gradients 2015 Nicolas Heess
Greg Wayne
David Silver
Timothy Lillicrap
Yuval Tassa
Tom Erez
6
+ Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) 2015 Djork-Arné Clevert
Thomas Unterthiner
Sepp Hochreiter
6
+ Unsupervised Predictive Memory in a Goal-Directed Agent 2018 Greg Wayne
Chia-Chun Hung
Amos David
Mehdi Mirza
Arun Ahuja
Agnieszka Grabska‐Barwińska
Jack W. Rae
Piotr Mirowski
Joel Z. Leibo
Adam Santoro
6
+ Prioritized Experience Replay 2015 Tom Schaul
John Quan
Ioannis Antonoglou
David Silver
6
+ Universal Planning Networks 2018 Aravind Srinivas
Allan Jabri
Pieter Abbeel
Sergey Levine
Chelsea Finn
5
+ Model-Based Planning with Discrete and Continuous Actions 2017 Mikael Henaff
WILLIAM F. WHITNEY
Yann LeCun
5
+ Model-Ensemble Trust-Region Policy Optimization 2018 Thanard Kurutach
Ignasi Clavera
Yan Duan
Aviv Tamar
Pieter Abbeel
5
+ Distributed Prioritized Experience Replay 2018 Dan Horgan
John Quan
David Budden
Gabriel Barth-Maron
Matteo Hessel
Hado van Hasselt
David Silver
5
+ DeepMind Control Suite 2018 Yuval Tassa
Yotam Doron
Alistair Muldal
Tom Erez
Yazhe Li
Diego de Las Casas
David Budden
Abbas Abdolmaleki
Josh Merel
Andrew Lefrancq
5
+ Self-Supervised Visual Planning with Temporal Skip Connections 2017 Frederik Ebert
Chelsea Finn
Alex X. Lee
Sergey Levine
5
+ Continuous control with deep reinforcement learning 2016 Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
Nicolas Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
5
+ Reinforcement Learning with Unsupervised Auxiliary Tasks 2016 Max Jaderberg
Volodymyr Mnih
Wojciech Marian Czarnecki
Tom Schaul
Joel Z. Leibo
David Silver
Koray Kavukcuoglu
5
+ Generative Temporal Models with Memory 2017 Mevlana Gemici
Chia-Chun Hung
Adam Santoro
Greg Wayne
Shakir Mohamed
Danilo Jimenez Rezende
Amos David
Timothy Lillicrap
5
+ PDF Chat Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification 2015 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
5
+ Data-efficient Deep Reinforcement Learning for Dexterous Manipulation 2017 Ivaylo Popov
Nicolas Heess
Timothy Lillicrap
Roland Hafner
Gabriel Barth-Maron
Matej Vecerík
Thomas Lampe
Yuval Tassa
Tom Erez
Martin Riedmiller
5
+ Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models 2018 Kurtland Chua
Roberto Calandra
Rowan McAllister
Sergey Levine
5
+ Prioritized Experience Replay 2015 Tom Schaul
John Quan
Ioannis Antonoglou
David Silver
4
+ Compatible Value Gradients for Reinforcement Learning of Continuous Deep Policies 2015 David Balduzzi
Muhammad Ghifary
4
+ Rainbow: Combining Improvements in Deep Reinforcement Learning 2017 Matteo Hessel
Joseph Modayil
Hado van Hasselt
Tom Schaul
Georg Ostrovski
Will Dabney
Daniel Horgan
Bilal Piot
Mohammad Gheshlaghi Azar
David Silver
4
+ PDF Chat Revisiting the Arcade Learning Environment: Evaluation Protocols and Open Problems for General Agents 2018 Marlos C. Machado
Marc G. Bellemare
Erik Talvitie
Joel Veness
Matthew Hausknecht
Michael Bowling
4
+ PDF Chat Neural Network Dynamics for Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning 2018 Anusha Nagabandi
Gregory Kahn
Ronald S. Fearing
Sergey Levine
4
+ Learning to learn by gradient descent by gradient descent 2016 Marcin Andrychowicz
Misha Denil
Sergio Luis Suárez Gómez
Matthew W. Hoffman
David Pfau
Tom Schaul
Brendan Shillingford
Nando de Freitas
4
+ End-To-End Memory Networks 2015 Sainbayar Sukhbaatar
Arthur Szlam
Jason Weston
Rob Fergus
4
+ Learning Continuous Control Policies by Stochastic Value Gradients 2015 Nicolas Heess
Greg Wayne
David Silver
Timothy Lillicrap
Yuval Tassa
Tom Erez
4
+ Emergence of Locomotion Behaviours in Rich Environments 2017 Nicolas Heess
Dhruva Tb
Sriram Srinivasan
Jay Lemmon
Josh Merel
Greg Wayne
Yuval Tassa
Tom Erez
Ziyu Wang
S. M. Ali Eslami
4
+ Deep Variational Reinforcement Learning for POMDPs 2018 Maximilian Igl
Luisa Zintgraf
Tuan Anh Le
Frank Wood
Shimon Whiteson
4
+ Recurrent Environment Simulators 2017 Silvia Chiappa
Sébastien Racanière
Daan Wierstra
Shakir Mohamed
4
+ PDF Chat ImageNet Large Scale Visual Recognition Challenge 2015 Olga Russakovsky
Jia Deng
Hao Su
Jonathan Krause
Sanjeev Satheesh
Sean Ma
Zhiheng Huang
Andrej Karpathy
Aditya Khosla
Michael S. Bernstein
4
+ Sequence to Sequence Learning with Neural Networks 2014 Ilya Sutskever
Oriol Vinyals
Quoc V. Le
4
+ Model-Based Reinforcement Learning for Atari 2019 Łukasz Kaiser
Mohammad Babaeizadeh
Piotr Miłoś
Błażej Osiński
Roy H. Campbell
Konrad Czechowski
Dumitru Erhan
Chelsea Finn
Piotr Kozakowski
Sergey Levine
4
+ Semi-Supervised Classification with Graph Convolutional Networks 2016 Thomas Kipf
Max Welling
4
+ Representation Learning with Contrastive Predictive Coding 2018 Aäron van den Oord
Yazhe Li
Oriol Vinyals
4
+ SOLAR: Deep Structured Representations for Model-Based Reinforcement Learning 2018 Marvin Zhang
Sharad Vikram
Laura Smith
Pieter Abbeel
Matthew Johnson
Sergey Levine
4