+
PDF
Chat
|
Can foundation models actively gather information in interactive
environments to test hypotheses?
|
2024
|
Nan Rosemary Ke
Danny P. Sawyer
Hubert Soyer
Martin Engelcke
David Reichert
Drew A. Hudson
John Reid
Alexander Lerchner
Danilo Jimenez Rezende
Timothy Lillicrap
|
+
PDF
Chat
|
AndroidWorld: A Dynamic Benchmarking Environment for Autonomous Agents
|
2024
|
C. Rawles
Sarah Clinckemaillie
Yifan Chang
Jonathan Waltz
Gabrielle Lau
Marybeth Fair
Alice Li
William Bishop
Wei Li
Folawiyo Campbell-Ajala
|
+
PDF
Chat
|
Metacognitive Capabilities of LLMs: An Exploration in Mathematical
Problem Solving
|
2024
|
Aniket Didolkar
Anirudh Goyal
Nan Rosemary Ke
Siyuan Guo
Michal Vaľko
Timothy Lillicrap
Danilo Jimenez Rezende
Yoshua Bengio
Michael C. Mozer
Sanjeev Arora
|
+
PDF
Chat
|
Monte Carlo Tree Search Boosts Reasoning via Iterative Preference
Learning
|
2024
|
Yuxi Xie
Anirudh Goyal
Wenyue Zheng
Min‐Yen Kan
Timothy Lillicrap
Kenji Kawaguchi
Michael Shieh
|
+
PDF
Chat
|
Mixture-of-Depths: Dynamically allocating compute in transformer-based
language models
|
2024
|
David Raposo
Sam Ritter
Blake A. Richards
Timothy Lillicrap
Peter C. Humphreys
Adam Santoro
|
+
PDF
Chat
|
Gemini 1.5: Unlocking multimodal understanding across millions of tokens
of context
|
2024
|
Gemini Team
Machel Reid
Nikolay Savinov
Denis Teplyashin
Dmitry
Lepikhin
Timothy Lillicrap
Jean-baptiste Alayrac
Radu Soricut
Angeliki Lazaridou
|
+
|
Mastering Diverse Domains through World Models
|
2023
|
Danijar Hafner
Jurgis Pašukonis
Jimmy Ba
Timothy Lillicrap
|
+
|
Android in the Wild: A Large-Scale Dataset for Android Device Control
|
2023
|
C. Rawles
Alice Li
Daniel Rodríguez Rodríguez
Oriana Riva
Timothy Lillicrap
|
+
|
Gemini: A Family of Highly Capable Multimodal Models
|
2023
|
Gemini Team
Rohan Anil
Sebastian Borgeaud
Jean-Baptiste Alayrac
Jiahui Yu
Radu Soricut
Johan Schalkwyk
Andrew M. Dai
Anja Hauth
Katie Millican
|
+
|
Equilibrium Aggregation: Encoding Sets via Optimization
|
2022
|
Sergey Bartunov
Fabian B. Fuchs
Timothy Lillicrap
|
+
|
Retrieval-Augmented Reinforcement Learning
|
2022
|
Anirudh Goyal
Abram L. Friesen
Andrea Banino
Théophane Weber
Nan Rosemary Ke
Adrià Puigdomènech Badia
Arthur Guez
Mehdi Mirza
Peter C. Humphreys
Ksenia Konyushkova
|
+
|
A data-driven approach for learning to control computers
|
2022
|
Peter C. Humphreys
David Raposo
Toby Pohlen
Gregory Thornton
Rachita Chhaparia
Alistair Muldal
Josh Abramson
Petko Georgiev
Alex Goldin
Adam Santoro
|
+
|
Intra-agent speech permits zero-shot task acquisition
|
2022
|
Yan Chen
Federico Carnevale
Petko Georgiev
Adam Santoro
Aurelia Guy
Alistair Muldal
Chia‐Chun Hung
Josh Abramson
Timothy Lillicrap
Gregory Wayne
|
+
|
Evaluating Multimodal Interactive Agents
|
2022
|
Josh Abramson
Arun Ahuja
Federico Carnevale
Petko Georgiev
Alex Goldin
Alden Hung
Jessica Landon
Timothy Lillicrap
Alistair Muldal
Blake A. Richards
|
+
|
Large-Scale Retrieval for Reinforcement Learning
|
2022
|
Peter C. Humphreys
Arthur Guez
Olivier Tieleman
Laurent Sifre
Théophane Weber
Timothy Lillicrap
|
+
|
Toward Next-Generation Artificial Intelligence: Catalyzing the NeuroAI Revolution
|
2022
|
Anthony M. Zador
Blake A. Richards
Bence P. Ölveczky
G. Sean Escola
Yoshua Bengio
Kwabena Boahen
Matthew Botvinick
Dmitri B. Chklovskii
Anne K. Churchland
Claudia Clopath
|
+
|
Evaluating Long-Term Memory in 3D Mazes
|
2022
|
Jurgis Pašukonis
Timothy Lillicrap
Danijar Hafner
|
+
|
Improving Multimodal Interactive Agents with Reinforcement Learning from Human Feedback
|
2022
|
Josh Abramson
Arun Ahuja
Federico Carnevale
Petko Georgiev
Alex Goldin
Alden Hung
Jessica Landon
Jirka Lhotka
Timothy Lillicrap
Alistair Muldal
|
+
PDF
Chat
|
Creating Multimodal Interactive Agents with Imitation and
Self-Supervised Learning
|
2021
|
DeepMind Interactive Agents Team
Josh Abramson
Arun Ahuja
Arthur Brussee
Federico Carnevale
Mary Cassin
Felix Fischer
Petko Georgiev
Alex Goldin
Tim Harley
|
+
|
Towards Biologically Plausible Convolutional Networks
|
2021
|
Roman Pogodin
Yash Mehta
Timothy Lillicrap
Peter E. Latham
|
+
|
Symbolic Behaviour in Artificial Intelligence
|
2021
|
Adam Santoro
Andrew K. Lampinen
Kory W. Mathewson
Timothy Lillicrap
David Raposo
|
+
|
Creating Multimodal Interactive Agents with Imitation and Self-Supervised Learning
|
2021
|
DeepMind Interactive Agents Team
Josh Abramson
Arun Ahuja
Arthur Brussee
Federico Carnevale
Mary Cassin
Felix R. Fischer
Petko Georgiev
Alex Goldin
Mansi Gupta
|
+
|
Symbolic Behaviour in Artificial Intelligence
|
2021
|
Adam Santoro
Andrew K. Lampinen
Kory W. Mathewson
Timothy Lillicrap
David Raposo
|
+
|
Towards Biologically Plausible Convolutional Networks
|
2021
|
Roman Pogodin
Yash Mehta
Timothy Lillicrap
Peter E. Latham
|
+
PDF
Chat
|
Mastering Atari, Go, chess and shogi by planning with a learned model
|
2020
|
Julian Schrittwieser
Ioannis Antonoglou
Thomas Hubert
Karen Simonyan
Laurent Sifre
Simon Schmitt
Arthur Guez
Edward Lockhart
Demis Hassabis
Thore Graepel
|
+
PDF
Chat
|
Imitating Interactive Intelligence
|
2020
|
Josh Abramson
Arun Ahuja
Iain Barr
Arthur Brussee
Federico Carnevale
Mary Cassin
Rachita Chhaparia
Stephen R. L. Clark
Bogdan Damoc
Andrew Dudzik
|
+
|
Mastering Atari with Discrete World Models
|
2020
|
Danijar Hafner
Timothy Lillicrap
Mohammad Norouzi
Jimmy Ba
|
+
|
Beyond Tabula-Rasa: a Modular Reinforcement Learning Approach for Physically Embedded 3D Sokoban.
|
2020
|
Péter Karkus
Mehdi Mirza
Arthur Guez
Andrew Jaegle
Timothy Lillicrap
Lars Buesing
Nicolas Heess
Théophane Weber
|
+
PDF
Chat
|
dm_control: Software and tasks for continuous control
|
2020
|
Saran Tunyasuvunakool
Alistair Muldal
Yotam Doron
Siqi Liu
Steven Bohez
Josh Merel
Tom Erez
Timothy Lillicrap
Nicolas Heess
Yuval Tassa
|
+
|
Physically Embedded Planning Problems: New Challenges for Reinforcement Learning
|
2020
|
Mehdi Mirza
Andrew Jaegle
Jonathan J. Hunt
Arthur Guez
Saran Tunyasuvunakool
Alistair Muldal
Théophane Weber
Péter Karkus
Sébastien Racanière
Lars Buesing
|
+
|
Training Generative Adversarial Networks by Solving Ordinary Differential Equations
|
2020
|
Chongli Qin
Yan Wu
Jost Tobias Springenberg
Andrew Brock
Jeff Donahue
Timothy Lillicrap
Pushmeet Kohli
|
+
|
Imitating Interactive Intelligence
|
2020
|
Josh Abramson
Arun Ahuja
Iain Barr
Arthur Brussee
Federico Carnevale
Mary Cassin
Rachita Chhaparia
Stephen Clark
Bogdan Damoc
Andrew Dudzik
|
+
|
Mastering Atari with Discrete World Models
|
2020
|
Danijar Hafner
Timothy Lillicrap
Mohammad Norouzi
Jimmy Ba
|
+
|
Beyond Tabula-Rasa: a Modular Reinforcement Learning Approach for Physically Embedded 3D Sokoban
|
2020
|
Péter Karkus
Mehdi Mirza
Arthur Guez
Andrew Jaegle
Timothy Lillicrap
Lars Buesing
Nicolas Heess
Théophane Weber
|
+
|
Dream to Control: Learning Behaviors by Latent Imagination.
|
2019
|
Danijar Hafner
Timothy Lillicrap
Jimmy Ba
Mohammad Norouzi
|
+
PDF
Chat
|
Optimizing agent behavior over long time scales by transporting value
|
2019
|
Chia-Chun Hung
Timothy Lillicrap
Josh Abramson
Yan Wu
Mehdi Mirza
Federico Carnevale
Arun Ahuja
Greg Wayne
|
+
|
Compressive Transformers for Long-Range Sequence Modelling
|
2019
|
Jack W. Rae
Anna Potapenko
Siddhant M. Jayakumar
Timothy Lillicrap
|
+
|
What does it mean to understand a neural network
|
2019
|
Timothy Lillicrap
Konrad P. Körding
|
+
|
Meta-Learning Neural Bloom Filters
|
2019
|
Jack W. Rae
Sergey Bartunov
Timothy Lillicrap
|
+
|
Using Weight Mirrors to Improve Feedback Alignment
|
2019
|
Mohamed Akrout
Collin Wilson
Peter C. Humphreys
Timothy Lillicrap
Douglas Tweed
|
+
|
An investigation of model-free planning
|
2019
|
Arthur Guez
Mehdi Mirza
Karol Gregor
Rishabh Kabra
Sébastien Racanière
Théophane Weber
David Raposo
Adam Santoro
Laurent Orseau
Tom Eccles
|
+
|
Learning to Make Analogies by Contrasting Abstract Relational Structure
|
2019
|
Felix Hill
Adam Santoro
David G. T. Barrett
Ari S. Morcos
Timothy Lillicrap
|
+
|
Deep Learning without Weight Transport
|
2019
|
Mohamed Akrout
Collin Wilson
Peter C. Humphreys
Timothy Lillicrap
Douglas Tweed
|
+
|
Is coding a relevant metaphor for building AI? A commentary on "Is coding a relevant metaphor for the brain?", by Romain Brette
|
2019
|
Adam Santoro
Felix Hill
David G. T. Barrett
David Raposo
Matthew Botvinick
Timothy Lillicrap
|
+
|
Deep Compressed Sensing
|
2019
|
Yan Wu
Mihaela Rosca
Timothy Lillicrap
|
+
|
Experience Replay for Continual Learning
|
2019
|
David Rolnick
Arun Ahuja
Jonathan Schwarz
Timothy Lillicrap
Gregory Wayne
|
+
|
Deep Learning without Weight Transport
|
2019
|
Mohamed Akrout
Collin Wilson
Peter C. Humphreys
Timothy Lillicrap
Douglas Tweed
|
+
|
Automated curricula through setter-solver interactions
|
2019
|
Sébastien Racanière
Andrew K. Lampinen
Adam Santoro
David Reichert
Vlad Firoiu
Timothy Lillicrap
|
+
|
Meta-Learning Deep Energy-Based Memory Models
|
2019
|
Sergey Bartunov
Jack W. Rae
Simon Osindero
Timothy Lillicrap
|
+
|
LOGAN: Latent Optimisation for Generative Adversarial Networks
|
2019
|
Yan Wu
Jeff Donahue
David Balduzzi
Karen Simonyan
Timothy Lillicrap
|
+
|
Dream to Control: Learning Behaviors by Latent Imagination
|
2019
|
Danijar Hafner
Timothy Lillicrap
Jimmy Ba
Mohammad Norouzi
|
+
|
Compressive Transformers for Long-Range Sequence Modelling
|
2019
|
Jack W. Rae
Anna Potapenko
Siddhant M. Jayakumar
Timothy Lillicrap
|
+
|
What does it mean to understand a neural network?
|
2019
|
Timothy Lillicrap
Konrad P. Körding
|
+
|
Meta-Learning Neural Bloom Filters
|
2019
|
Jack W. Rae
Sergey Bartunov
Timothy Lillicrap
|
+
|
An investigation of model-free planning
|
2019
|
Arthur Guez
Mehdi Mirza
Karol Gregor
Rishabh Kabra
Sébastien Racanière
Théophane Weber
David Raposo
Adam Santoro
Laurent Orseau
Tom Eccles
|
+
|
Entropic Policy Composition with Generalized Policy Improvement and Divergence Correction.
|
2018
|
Jonathan J. Hunt
André Barreto
Timothy Lillicrap
Nicolas Heess
|
+
|
Composing Entropic Policies using Divergence Correction.
|
2018
|
Jonathan J. Hunt
André Barreto
Timothy Lillicrap
Nicolas Heess
|
+
|
Learning Attractor Dynamics for Generative Memory
|
2018
|
Yan Wu
Gregory Wayne
Karol Gregor
Timothy Lillicrap
|
+
|
Learning Latent Dynamics for Planning from Pixels
|
2018
|
Danijar Hafner
Timothy Lillicrap
Ian Fischer
Ruben Villegas
David Ha
Honglak Lee
James Davidson
|
+
|
Optimizing Agent Behavior over Long Time Scales by Transporting Value
|
2018
|
Chia-Chun Hung
Timothy Lillicrap
Josh Abramson
Yan Wu
Mehdi Mirza
Federico Carnevale
Arun Ahuja
Greg Wayne
|
+
|
Episodic Curiosity through Reachability
|
2018
|
Nikolay Savinov
Anton Raichuk
Raphaël Marinier
Damien Vincent
Marc Pollefeys
Timothy Lillicrap
Sylvain Gelly
|
+
|
Reliable Uncertainty Estimates in Deep Neural Networks using Noise Contrastive Priors
|
2018
|
Danijar Hafner
Dustin Tran
Alex Irpan
Timothy Lillicrap
James Davidson
|
+
|
Relational recurrent neural networks
|
2018
|
Adam Santoro
Ryan Faulkner
David Raposo
Jack W. Rae
Mike Chrzanowski
Théophane Weber
Daan Wierstra
Oriol Vinyals
Razvan Pascanu
Timothy Lillicrap
|
+
|
The Kanerva Machine: A Generative Distributed Memory
|
2018
|
Yan Wu
Greg Wayne
Alex Graves
Timothy Lillicrap
|
+
|
Recall Traces: Backtracking Models for Efficient Reinforcement Learning
|
2018
|
Anirudh Goyal
Philémon Brakel
William Fedus
Soumye Singhal
Timothy Lillicrap
Sergey Levine
Hugo Larochelle
Yoshua Bengio
|
+
|
Fast Parametric Learning with Activation Memorization
|
2018
|
Jack W. Rae
Chris Dyer
Peter Dayan
Timothy Lillicrap
|
+
|
Distributed Distributional Deterministic Policy Gradients
|
2018
|
Gabriel Barth-Maron
Matthew W. Hoffman
David Budden
Will Dabney
Dan Horgan
Dhruva Tb
Alistair Muldal
Nicolas Heess
Timothy Lillicrap
|
+
|
DeepMind Control Suite
|
2018
|
Yuval Tassa
Yotam Doron
Alistair Muldal
Tom Erez
Yazhe Li
Diego de Las Casas
David Budden
Abbas Abdolmaleki
Josh Merel
Andrew Lefrancq
|
+
|
Unsupervised Predictive Memory in a Goal-Directed Agent
|
2018
|
Greg Wayne
Chia-Chun Hung
Amos David
Mehdi Mirza
Arun Ahuja
Agnieszka Grabska‐Barwińska
Jack W. Rae
Piotr Mirowski
Joel Z. Leibo
Adam Santoro
|
+
|
Distributed Distributional Deterministic Policy Gradients
|
2018
|
Gabriel Barth-Maron
Matthew W. Hoffman
David Budden
Will Dabney
Dan Horgan
Dhruva Tb
Alistair Muldal
Nicolas Heess
Timothy Lillicrap
|
+
|
Relational Deep Reinforcement Learning
|
2018
|
Vinícius Zambaldi
David Raposo
Adam Santoro
Victor Bapst
Yujia Li
I. Babuschkin
Karl Tuyls
David Reichert
Timothy Lillicrap
Edward Lockhart
|
+
|
Episodic Curiosity through Reachability
|
2018
|
Nikolay Savinov
Anton Raichuk
Raphaël Marinier
Damien Vincent
Marc Pollefeys
Timothy Lillicrap
Sylvain Gelly
|
+
|
Experience Replay for Continual Learning
|
2018
|
David Rolnick
Arun Ahuja
Jonathan Schwarz
Timothy Lillicrap
Greg Wayne
|
+
|
Learning Attractor Dynamics for Generative Memory
|
2018
|
Yue Wu
Greg Wayne
Karol Gregor
Timothy Lillicrap
|
+
|
Assessing the Scalability of Biologically-Motivated Deep Learning Algorithms and Architectures
|
2018
|
Sergey Bartunov
Adam Santoro
Blake A. Richards
Luke Marris
Geoffrey E. Hinton
Timothy Lillicrap
|
+
|
Measuring abstract reasoning in neural networks
|
2018
|
David G. T. Barrett
Felix Hill
Adam Santoro
Ari S. Morcos
Timothy Lillicrap
|
+
|
Noise Contrastive Priors for Functional Uncertainty
|
2018
|
Danijar Hafner
Dustin Tran
Timothy Lillicrap
Alex Irpan
James Davidson
|
+
|
The Kanerva Machine: A Generative Distributed Memory
|
2018
|
Yan Wu
Greg Wayne
Alex Graves
Timothy Lillicrap
|
+
|
Relational recurrent neural networks
|
2018
|
Adam Santoro
Ryan Faulkner
David Raposo
Jack W. Rae
Mike Chrzanowski
Théophane Weber
Daan Wierstra
Oriol Vinyals
Razvan Pascanu
Timothy Lillicrap
|
+
|
Recall Traces: Backtracking Models for Efficient Reinforcement Learning
|
2018
|
Anirudh Goyal
Philémon Brakel
William Fedus
Soumye Singhal
Timothy Lillicrap
Sergey Levine
Hugo Larochelle
Yoshua Bengio
|
+
|
Composing Entropic Policies using Divergence Correction
|
2018
|
Jonathan J. Hunt
André Sales Barreto
Timothy Lillicrap
Nicolas Heess
|
+
|
Learning Latent Dynamics for Planning from Pixels
|
2018
|
Danijar Hafner
Timothy Lillicrap
Ian Fischer
Ruben Villegas
David Ha
Honglak Lee
James Davidson
|
+
|
Optimizing Agent Behavior over Long Time Scales by Transporting Value
|
2018
|
Chia‐Chun Hung
Timothy Lillicrap
Josh Abramson
Yan Wu
Mehdi Mirza
Federico Carnevale
Arun Ahuja
Greg Wayne
|
+
|
Fast Parametric Learning with Activation Memorization
|
2018
|
Jack W. Rae
Chris Dyer
Peter Dayan
Timothy Lillicrap
|
+
|
Towards deep learning with segregated dendrites
|
2017
|
Jordan Guerguiev
Timothy Lillicrap
Blake A. Richards
|
+
|
A simple neural network module for relational reasoning
|
2017
|
Adam Santoro
David Raposo
David G. T. Barrett
Mateusz Malinowski
Razvan Pascanu
Peter Battaglia
Timothy Lillicrap
|
+
PDF
Chat
|
Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates
|
2017
|
Shixiang Gu
Ethan Holly
Timothy Lillicrap
Sergey Levine
|
+
|
Data-efficient Deep Reinforcement Learning for Dexterous Manipulation
|
2017
|
Ivaylo Popov
Nicolas Heess
Timothy Lillicrap
Roland Hafner
Gabriel Barth-Maron
Matej Vecerík
Thomas Lampe
Yuval Tassa
Tom Erez
Martin Riedmiller
|
+
|
Discovering objects and their relations from entangled scene representations
|
2017
|
David Raposo
Adam Santoro
David G. T. Barrett
Razvan Pascanu
Timothy Lillicrap
Peter Battaglia
|
+
|
Q-PrOP: Sample-efficient policy gradient with an off-policy critic
|
2017
|
Shixiang Gu
Timothy Lillicrap
Zoubin Ghahramani
Richard E. Turner
Sergey Levine
|
+
|
Generative Temporal Models with Memory
|
2017
|
Mevlana Gemici
Chia-Chun Hung
Adam Santoro
Greg Wayne
Shakir Mohamed
Danilo Jimenez Rezende
Amos David
Timothy Lillicrap
|
+
|
StarCraft II: A New Challenge for Reinforcement Learning
|
2017
|
Oriol Vinyals
Timo Ewalds
Sergey Bartunov
Petko Georgiev
Alexander Sasha Vezhnevets
Michelle Yeo
Alireza Makhzani
Heinrich Küttler
John Agapiou
Julian Schrittwieser
|
+
|
Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm
|
2017
|
David Silver
Thomas Hubert
Julian Schrittwieser
Ioannis Antonoglou
Matthew Lai
Arthur Guez
Marc Lanctot
Laurent Sifre
Dharshan Kumaran
Thore Graepel
|
+
|
Interpolated Policy Gradient: Merging On-Policy and Off-Policy Gradient Estimation for Deep Reinforcement Learning
|
2017
|
Shixiang Gu
Timothy Lillicrap
Zoubin Ghahramani
Richard E. Turner
Bernhard Schölkopf
Sergey Levine
|
+
|
A simple neural network module for relational reasoning
|
2017
|
Adam Santoro
David Raposo
David G. T. Barrett
Mateusz Malinowski
Razvan Pascanu
Peter Battaglia
Timothy Lillicrap
|
+
|
Data-efficient Deep Reinforcement Learning for Dexterous Manipulation
|
2017
|
Ivaylo Popov
Nicolas Heess
Timothy Lillicrap
Roland Hafner
Gabriel Barth-Maron
Matej Vecerík
Thomas Lampe
Yuval Tassa
Tom Erez
Martin Riedmiller
|
+
|
Discovering objects and their relations from entangled scene representations
|
2017
|
David Raposo
Adam Santoro
David M. Barrett
Razvan Pascanu
Timothy Lillicrap
Peter Battaglia
|
+
|
Matching networks for one shot learning
|
2016
|
Oriol Vinyals
Charles Blundell
Timothy Lillicrap
Koray Kavukcuoglu
Daan Wierstra
|
+
|
Learning to Learn for Global Optimization of Black Box Functions.
|
2016
|
Yutian Chen
Matthew W. Hoffman
Sergio Gómez Colmenarejo
Misha Denil
Timothy Lillicrap
Nando de Freitas
|
+
|
Learning to Learn without Gradient Descent by Gradient Descent
|
2016
|
Yutian Chen
Matthew W. Hoffman
Sergio Gómez Colmenarejo
Misha Denil
Timothy Lillicrap
Matt Botvinick
Nando de Freitas
|
+
|
Scaling Memory-Augmented Neural Networks with Sparse Reads and Writes
|
2016
|
Jack W. Rae
Jonathan J. Hunt
Tim Harley
Ivo Danihelka
Andrew Senior
Greg Wayne
Alex Graves
Timothy Lillicrap
|
+
|
Learning and Transfer of Modulated Locomotor Controllers
|
2016
|
Nicolas Heess
Gregory Wayne
Yuval Tassa
Timothy Lillicrap
Martin Riedmiller
David Silver
|
+
|
Biologically feasible deep learning with segregated dendrites
|
2016
|
Jordan Guergiuev
Timothy Lillicrap
Blake A. Richards
|
+
|
Towards deep learning with segregated dendrites
|
2016
|
Jordan Guergiuev
Timothy Lillicrap
Blake A. Richards
|
+
|
Deep learning with segregated dendrites
|
2016
|
Jordan Guergiuev
Timothy Lillicrap
Blake A. Richards
|
+
|
Continuous control with deep reinforcement learning
|
2016
|
Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
Nicolas Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
|
+
|
Matching Networks for One Shot Learning
|
2016
|
Oriol Vinyals
Charles Blundell
Timothy Lillicrap
Koray Kavukcuoglu
Daan Wierstra
|
+
|
One-shot Learning with Memory-Augmented Neural Networks
|
2016
|
Adam Santoro
Sergey Bartunov
Matthew Botvinick
Daan Wierstra
Timothy Lillicrap
|
+
|
Asynchronous Methods for Deep Reinforcement Learning
|
2016
|
Volodymyr Mnih
Adrià Puigdomènech Badia
Mehdi Mirza
Alex Graves
Timothy Lillicrap
Tim Harley
David Silver
Koray Kavukcuoglu
|
+
|
Learning to Learn without Gradient Descent by Gradient Descent
|
2016
|
Yutian Chen
Matthew W. Hoffman
Sergio Gómez Colmenarejo
Misha Denil
Timothy Lillicrap
Matt Botvinick
Nando de Freitas
|
+
|
Continuous Deep Q-Learning with Model-based Acceleration
|
2016
|
Shixiang Gu
Timothy Lillicrap
Ilya Sutskever
Sergey Levine
|
+
|
Q-Prop: Sample-Efficient Policy Gradient with An Off-Policy Critic
|
2016
|
Shixiang Gu
Timothy Lillicrap
Zoubin Ghahramani
Richard E. Turner
Sergey Levine
|
+
|
Deep Reinforcement Learning for Robotic Manipulation with Asynchronous Off-Policy Updates
|
2016
|
Shixiang Gu
Ethan Holly
Timothy Lillicrap
Sergey Levine
|
+
|
Asynchronous Methods for Deep Reinforcement Learning
|
2016
|
Volodymyr Mnih
Adrià Puigdomènech Badia
Mehdi Mirza
Alex Graves
Tim Harley
Timothy Lillicrap
David Silver
Koray Kavukcuoglu
|
+
|
One-shot Learning with Memory-Augmented Neural Networks
|
2016
|
Adam Santoro
Sergey Bartunov
Matthew Botvinick
Daan Wierstra
Timothy Lillicrap
|
+
|
Learning and Transfer of Modulated Locomotor Controllers
|
2016
|
Nicolas Heess
Greg Wayne
Yuval Tassa
Timothy Lillicrap
Martin Riedmiller
David Silver
|
+
|
Matching Networks for One Shot Learning
|
2016
|
Oriol Vinyals
Charles Blundell
Timothy Lillicrap
Koray Kavukcuoglu
Daan Wierstra
|
+
|
Scaling Memory-Augmented Neural Networks with Sparse Reads and Writes
|
2016
|
Jack W. Rae
Jonathan J. Hunt
Tim Harley
Ivo Danihelka
Andrew Senior
Greg Wayne
Alex Graves
Timothy Lillicrap
|
+
|
Towards deep learning with segregated dendrites
|
2016
|
Jordan Guergiuev
Timothy Lillicrap
Blake A. Richards
|
+
|
Learning continuous control policies by stochastic value gradients
|
2015
|
Nicolas Heess
Greg Wayne
David Silver
Timothy Lillicrap
Yuval Tassa
Tom Erez
|
+
|
Learning Continuous Control Policies by Stochastic Value Gradients
|
2015
|
Nicolas Heess
Greg Wayne
David Silver
Timothy Lillicrap
Yuval Tassa
Tom Erez
|
+
|
Continuous control with deep reinforcement learning
|
2015
|
Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
Nicolas Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
|
+
|
Towards Principled Unsupervised Learning
|
2015
|
Ilya Sutskever
Rafał Józefowicz
Karol Gregor
Danilo Jimenez Rezende
Timothy Lillicrap
Oriol Vinyals
|
+
|
Memory-based control with recurrent neural networks
|
2015
|
Nicolas Heess
Jonathan J. Hunt
Timothy Lillicrap
David Silver
|
+
|
Deep Reinforcement Learning in Large Discrete Action Spaces
|
2015
|
Gabriel Dulac-Arnold
Richard Evans
Hado van Hasselt
Peter Sunehag
Timothy Lillicrap
Jonathan J. Hunt
Timothy Mann
Théophane Weber
Thomas Degris
Ben Coppin
|
+
|
Random feedback weights support learning in deep neural networks
|
2014
|
Timothy Lillicrap
Daniel Cownden
Douglas Tweed
Colin J. Akerman
|
+
|
Random feedback weights support learning in deep neural networks
|
2014
|
Timothy Lillicrap
Daniel Cownden
Douglas Tweed
Colin J. Akerman
|