+
|
Bilevel gradient methods and Morse parametric qualification
|
2025
|
JĂ©rĂŽme Bolte
Quoc-Tung Le
Edouard Pauwels
Samuel Vaiter
|
+
PDF
Chat
|
Risk Estimate under a Nonstationary Autoregressive Model for Data-Driven
Reproduction Number Estimation
|
2024
|
Barbara Pascal
Samuel Vaiter
|
+
PDF
Chat
|
Geometric and computational hardness of bilevel programming
|
2024
|
JĂ©rĂŽme Bolte
Quoc-Tung Le
Edouard Pauwels
Samuel Vaiter
|
+
PDF
Chat
|
CHANI: Correlation-based Hawkes Aggregation of Neurons with bio-Inspiration
|
2024
|
Sophie Jaffard
Samuel Vaiter
Patricia Reynaud-Bouret
|
+
PDF
Chat
|
Derivatives of Stochastic Gradient Descent
|
2024
|
Franck Iutzeler
Edouard Pauwels
Samuel Vaiter
|
+
|
A theory of optimal convex regularization for low-dimensional recovery
|
2024
|
Yann Traonmilin
RĂ©mi Gribonval
Samuel Vaiter
|
+
PDF
Chat
|
The Derivatives of SinkhornâKnopp Converge
|
2023
|
Edouard Pauwels
Samuel Vaiter
|
+
PDF
Chat
|
The Geometry of Sparse Analysis Regularization
|
2023
|
Xavier Dupuis
Samuel Vaiter
|
+
PDF
Chat
|
Convergence of Message Passing Graph Neural Networks with Generic Aggregation On Random Graphs
|
2023
|
Matthieu Cordonnier
Nicolas Keriven
Nicolas Tremblay
Samuel Vaiter
|
+
PDF
Chat
|
Convergence of Message Passing Graph Neural Networks with Generic Aggregation On Large Random Graphs
|
2023
|
Matthieu Cordonnier
Nicolas Keriven
Nicolas Tremblay
Samuel Vaiter
|
+
|
Local linear convergence of proximal coordinate descent algorithm
|
2023
|
Quentin Klopfenstein
Quentin Bertrand
Alexandre Gramfort
Joseph Salmon
Samuel Vaiter
|
+
PDF
Chat
|
Supervised Learning of Analysis-Sparsity Priors With Automatic Differentiation
|
2023
|
Hashem Ghanem
Joseph Salmon
Nicolas Keriven
Samuel Vaiter
|
+
|
A Lower Bound and a Near-Optimal Algorithm for Bilevel Empirical Risk Minimization
|
2023
|
Mathieu Dagréou
Thomas Moreau
Samuel Vaiter
Pierre Ablin
|
+
|
On the Robustness of Text Vectorizers
|
2023
|
RĂ©mi Catellier
Samuel Vaiter
Damien Garreau
|
+
|
Gradient scarcity with Bilevel Optimization for Graph Learning
|
2023
|
Hashem Ghanem
Samuel Vaiter
Nicolas Keriven
|
+
|
Provable local learning rule by expert aggregation for a Hawkes network
|
2023
|
Sophie Jaffard
Samuel Vaiter
Alexandre Muzy
Patricia Reynaud-Bouret
|
+
|
Convergence of Message Passing Graph Neural Networks with Generic Aggregation On Large Random Graphs
|
2023
|
Matthieu Cordonnier
Nicolas Keriven
Nicolas Tremblay
Samuel Vaiter
|
+
|
One-step differentiation of iterative algorithms
|
2023
|
JĂ©rĂŽme Bolte
Edouard Pauwels
Samuel Vaiter
|
+
|
What functions can Graph Neural Networks compute on random graphs? The role of Positional Encoding
|
2023
|
Nicolas Keriven
Samuel Vaiter
|
+
PDF
Chat
|
Benchopt: Reproducible, efficient and collaborative optimization benchmarks
|
2022
|
Thomas Moreau
Mathurin Massias
Alexandre Gramfort
Pierre Ablin
PierreâAntoine Bannier
Benjamin Charlier
Mathieu Dagréou
Tom Dupré la Tour
Ghislain Durif
CĂĄssio F. Dantas
|
+
PDF
Chat
|
The derivatives of Sinkhorn-Knopp converge
|
2022
|
Edouard Pauwels
Samuel Vaiter
|
+
PDF
Chat
|
A framework for bilevel optimization that enables stochastic and global variance reduction algorithms
|
2022
|
Mathieu Dagréou
Pierre Ablin
Samuel Vaiter
Thomas Moreau
|
+
PDF
Chat
|
Sparse and smooth: Improved guarantees for spectral clustering in the dynamic stochastic block model
|
2022
|
Nicolas Keriven
Samuel Vaiter
|
+
|
Automatic differentiation of nonsmooth iterative algorithms
|
2022
|
JĂ©rĂŽme Bolte
Edouard Pauwels
Samuel Vaiter
|
+
|
Benchopt: Reproducible, efficient and collaborative optimization benchmarks
|
2022
|
Thomas Moreau
Mathurin Massias
Alexandre Gramfort
Pierre Ablin
PierreâAntoine Bannier
Benjamin Charlier
Mathieu Dagréou
Tom Dupré la Tour
Ghislain Durif
CĂĄssio F. Dantas
|
+
|
A framework for bilevel optimization that enables stochastic and global variance reduction algorithms
|
2022
|
Mathieu Dagréou
Pierre Ablin
Samuel Vaiter
Thomas Moreau
|
+
|
The derivatives of Sinkhorn-Knopp converge
|
2022
|
Edouard Pauwels
Samuel Vaiter
|
+
PDF
Chat
|
Linear support vector regression with linear constraints
|
2021
|
Quentin Klopfenstein
Samuel Vaiter
|
+
PDF
Chat
|
Automated Data-Driven Selection of the Hyperparameters for Total-Variation-Based Texture Segmentation
|
2021
|
Barbara Pascal
Samuel Vaiter
Nelly Pustelnik
Patrice Abry
|
+
PDF
Chat
|
Implicit differentiation for fast hyperparameter selection in non-smooth convex learning
|
2021
|
Quentin Bertrand
Quentin Klopfenstein
Mathurin Massias
Mathieu Blondel
Samuel Vaiter
Alexandre Gramfort
Joseph Salmon
|
+
|
From optimization to algorithmic differentiation: a graph detour
|
2021
|
Samuel Vaiter
|
+
|
A theory of optimal convex regularization for low-dimensional recovery
|
2021
|
Yann Traonmilin
RĂ©mi Gribonval
Samuel Vaiter
|
+
|
On the Universality of Graph Neural Networks on Large Random Graphs
|
2021
|
Nicolas Keriven
Alberto Bietti
Samuel Vaiter
|
+
|
Supervised learning of analysis-sparsity priors with automatic differentiation
|
2021
|
Hashem Ghanem
Joseph Salmon
Nicolas Keriven
Samuel Vaiter
|
+
|
Implicit differentiation for fast hyperparameter selection in non-smooth convex learning
|
2021
|
Quentin Bertrand
Quentin Klopfenstein
Mathurin Massias
Mathieu Blondel
Samuel Vaiter
Alexandre Gramfort
Joseph Salmon
|
+
PDF
Chat
|
Convergence and Stability of Graph Convolutional Networks on Large Random Graphs
|
2020
|
Nicolas Keriven
Alberto Bietti
Samuel Vaiter
|
+
PDF
Chat
|
Block-Based Refitting in $$\ell _{12}$$ Sparse Regularization
|
2020
|
CharlesâAlban Deledalle
Nicolas Papadakis
Joseph Salmon
Samuel Vaiter
|
+
PDF
Chat
|
Dual Extrapolation for Sparse GLMs
|
2020
|
Mathurin Massias
Samuel Vaiter
Alexandre Gramfort
Joseph Salmon
|
+
|
Automated data-driven selection of the hyperparameters for Total-Variation based texture segmentation
|
2020
|
Barbara Pascal
Samuel Vaiter
Nelly Pustelnik
Patrice Abry
|
+
|
Implicit differentiation of Lasso-type models for hyperparameter optimization
|
2020
|
Quentin Bertrand
Quentin Klopfenstein
Mathieu Blondel
Samuel Vaiter
Alexandre Gramfort
Joseph Salmon
|
+
|
Model identification and local linear convergence of coordinate descent
|
2020
|
Quentin Klopfenstein
Quentin Bertrand
Alexandre Gramfort
Joseph Salmon
Samuel Vaiter
|
+
|
Automated data-driven selection of the hyperparameters for Total-Variation based texture segmentation
|
2020
|
Barbara Pascal
Samuel Vaiter
Nelly Pustelnik
Patrice Abry
|
+
|
Convergence and Stability of Graph Convolutional Networks on Large Random Graphs
|
2020
|
Nicolas Keriven
Alberto Bietti
Samuel Vaiter
|
+
|
Sparse and Smooth: improved guarantees for Spectral Clustering in the Dynamic Stochastic Block Model
|
2020
|
Nicolas Keriven
Samuel Vaiter
|
+
|
Block based refitting in $\ell_{12}$ sparse regularisation
|
2019
|
CharlesâAlban Deledalle
Nicolas Papadakis
Joseph Salmon
Samuel Vaiter
|
+
PDF
Chat
|
Exploiting regularity in sparse Generalized Linear Models
|
2019
|
Mathurin Massias
Samuel Vaiter
Alexandre Gramfort
Joseph Salmon
|
+
PDF
Chat
|
Refitting solutions promoted by $\ell_{12}$ sparse analysis regularization with block penalties
|
2019
|
CharlesâAlban Deledalle
Nicolas Papadakis
Joseph Salmon
Samuel Vaiter
|
+
|
Refitting Solutions Promoted by $$\ell _{12}$$ Sparse Analysis Regularizations with Block Penalties
|
2019
|
CharlesâAlban Deledalle
Nicolas Papadakis
Joseph Salmon
Samuel Vaiter
|
+
|
Dual Extrapolation for Sparse Generalized Linear Models
|
2019
|
Mathurin Massias
Samuel Vaiter
Alexandre Gramfort
Joseph Salmon
|
+
|
Block based refitting in $\ell_{12}$ sparse regularisation
|
2019
|
CharlesâAlban Deledalle
Nicolas Papadakis
Joseph Salmon
Samuel Vaiter
|
+
|
Refitting solutions promoted by $\ell_{12}$ sparse analysis regularization with block penalties
|
2019
|
CharlesâAlban Deledalle
Nicolas Papadakis
Joseph Salmon
Samuel Vaiter
|
+
|
Optimality of 1-norm regularization among weighted 1-norms for sparse recovery: a case study on how to find optimal regularizations
|
2018
|
Yann Traonmilin
Samuel Vaiter
|
+
PDF
Chat
|
Maximal Solutions of Sparse Analysis Regularization
|
2018
|
Abdessamad Barbara
A. Jourani
Samuel Vaiter
|
+
|
Is the 1-norm the best convex sparse regularization?
|
2018
|
Yann Traonmilin
Samuel Vaiter
RĂ©mi Gribonval
|
+
|
Recovery guarantees for low complexity models (Conference Presentation)
|
2017
|
Samuel Vaiter
Gabriel Peyré
Jalal Fadili
|
+
|
A sharp oracle inequality for Graph-Slope
|
2017
|
Pierre Bellec
Joseph Salmon
Samuel Vaiter
|
+
PDF
Chat
|
Model Consistency of Partly Smooth Regularizers
|
2017
|
Samuel Vaiter
Gabriel Peyré
Jalal Fadili
|
+
PDF
Chat
|
Accelerated Alternating Descent Methods for Dykstra-Like Problems
|
2017
|
Antonin Chambolle
Pauline Tan
Samuel Vaiter
|
+
|
Maximal Solutions of Sparse Analysis Regularization
|
2017
|
Abdessamad Barbara
Abderrahim Jourani
Samuel Vaiter
|
+
PDF
Chat
|
CLEAR: Covariant LEAst-Square Refitting with Applications to Image Restoration
|
2017
|
CharlesâAlban Deledalle
Nicolas Papadakis
Joseph Salmon
Samuel Vaiter
|
+
|
A sharp oracle inequality for Graph-Slope
|
2017
|
Pierre Bellec
Joseph Salmon
Samuel Vaiter
|
+
|
Maximal Solutions of Sparse Analysis Regularization
|
2017
|
Abdessamad Barbara
Abderrahim Jourani
Samuel Vaiter
|
+
|
A sharp oracle inequality for Graph-Slope
|
2017
|
Pierre Bellec
Joseph Salmon
Samuel Vaiter
|
+
|
CLEAR: Covariant LEAst-square Re-fitting with applications to image restoration
|
2016
|
C-A. Deledalle
Nicolas Papadakis
Joseph Salmon
Samuel Vaiter
|
+
PDF
Chat
|
The degrees of freedom of partly smooth regularizers
|
2016
|
Samuel Vaiter
Charles Deledalle
Jalal Fadili
Gabriel Peyré
Charles H Dossal
|
+
|
Proceedings of the third "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'16)
|
2016
|
Laurent Jacques
Christophe De Vleeschouwer
Y. Boursier
Prasad Sudhakar
Christine De Mol
Aleksandra PiĆŸurica
Sandrine Anthoine
Pierre Vandergheynst
Pascal Frossard
ĂaÄdaĆ Bilen
|
+
|
Characterizing the maximum parameter of the total-variation denoising through the pseudo-inverse of the divergence
|
2016
|
CharlesâAlban Deledalle
Nicolas Papadakis
Joseph Salmon
Samuel Vaiter
|
+
|
CLEAR: Covariant LEAst-square Re-fitting with applications to image restoration
|
2016
|
CharlesâAlban Deledalle
Nicolas Papadakis
Joseph Salmon
Samuel Vaiter
|
+
|
Model selection with low complexity priors
|
2015
|
Samuel Vaiter
Mohammad Golbabaee
Jalal Fadili
Gabriel Peyré
|
+
PDF
Chat
|
Low Complexity Regularization of Linear Inverse Problems
|
2015
|
Samuel Vaiter
Gabriel Peyré
Jalal Fadili
|
+
PDF
Chat
|
Sampling Theory, a Renaissance
|
2015
|
Samuel Vaiter
Gabriel Peyré
Jalal Fadili
|
+
PDF
Chat
|
Model Selection with Low Complexity Priors
|
2015
|
Samuel Vaiter
Mohammad Golbabaee
Jalal Fadili
Gabriel Peyré
|
+
|
Régularisations de faible complexité pour les problÚmes inverses
|
2014
|
Samuel Vaiter
|
+
PDF
Chat
|
Low Complexity Regularizations of Inverse Problems
|
2014
|
Samuel Vaiter
|
+
PDF
Chat
|
Low Complexity Regularization of Inverse Problems
|
2014
|
Samuel Vaiter
|
+
|
Stein Unbiased GrAdient estimator of the Risk (SUGAR) for multiple parameter selection
|
2014
|
CharlesâAlban Deledalle
Samuel Vaiter
Jalal Fadili
Gabriel Peyré
|
+
|
Partly Smooth Regularization of Inverse Problems
|
2014
|
Samuel Vaiter
Gabriel Peyré
Jalal Fadili
|
+
|
The Degrees of Freedom of Partly Smooth Regularizers
|
2014
|
Samuel Vaiter
CharlesâAlban Deledalle
Jalal Fadili
Gabriel Peyré
Charles Dossal
|
+
PDF
Chat
|
Stein Unbiased GrAdient estimator of the Risk (SUGAR) for Multiple Parameter Selection
|
2014
|
CharlesâAlban Deledalle
Samuel Vaiter
Jalal Fadili
Gabriel Peyré
|
+
|
Stein Unbiased GrAdient estimator of the Risk (SUGAR) for multiple parameter selection
|
2014
|
CharlesâAlban Deledalle
Samuel Vaiter
Jalal Fadili
Gabriel Peyré
|
+
|
The Degrees of Freedom of Partly Smooth Regularizers
|
2014
|
Samuel Vaiter
CharlesâAlban Deledalle
Jalal Fadili
Gabriel Peyré
Charles Dossal
|
+
|
Low Complexity Regularization of Linear Inverse Problems
|
2014
|
Samuel Vaiter
Gabriel Peyré
Jalal Fadili
|
+
PDF
Chat
|
Reconstruction Stable par RĂ©gularisation DĂ©composable Analyse
|
2013
|
Jalal Fadili
Gabriel Peyré
Samuel Vaiter
CharlesâAlban Deledalle
Joseph Salmon
|
+
PDF
Chat
|
Robustesse au bruit des régularisations polyhédrales
|
2013
|
Samuel Vaiter
Gabriel Peyré
Jalal Fadili
|
+
|
Model Selection with Low Complexity Priors
|
2013
|
Samuel Vaiter
Mohammad Golbabaee
Jalal Fadili
Gabriel Peyré
|
+
|
Model Selection with Piecewise Regular Gauges
|
2013
|
Samuel Vaiter
Mohammad Golbabaee
Jalal Fadili
Gabriel Peyré
|
+
PDF
Chat
|
Robust Polyhedral Regularization
|
2013
|
Samuel Vaiter
Gabriel Peyré
Jalal Fadili
|
+
|
Stable Recovery with Analysis Decomposable Priors
|
2013
|
M.J. Fadili
Gabriel Peyré
Samuel Vaiter
CharlesâAlban Deledalle
Joseph Salmon
|
+
PDF
Chat
|
Robust Polyhedral Regularization
|
2013
|
Samuel Vaiter
Gabriel Peyré
Jalal Fadili
|
+
|
Robust Polyhedral Regularization
|
2013
|
Samuel Vaiter
Gabriel Peyré
Jalal Fadili
|
+
|
Robust Polyhedral Regularization
|
2013
|
Samuel Vaiter
Gabriel Peyré
Jalal Fadili
|
+
PDF
Chat
|
Robust Sparse Analysis Regularization
|
2012
|
Samuel Vaiter
Gabriel Peyré
Charles H Dossal
Jalal Fadili
|
+
|
Local behavior of sparse analysis regularization: Applications to risk estimation
|
2012
|
Samuel Vaiter
Charles-Alban Deledalle
Gabriel Peyré
Charles Dossal
Jalal Fadili
|
+
PDF
Chat
|
Proximal Splitting Derivatives for Risk Estimation
|
2012
|
CharlesâAlban Deledalle
Samuel Vaiter
Gabriel Peyré
Jalal Fadili
Ch. Dossal
|
+
PDF
Chat
|
Unbiased risk estimation for sparse analysis regularization
|
2012
|
CharlesâAlban Deledalle
Samuel Vaiter
Gabriel Peyré
Jalal Fadili
Charles Dossal
|
+
PDF
Chat
|
The Degrees of Freedom of the Group Lasso
|
2012
|
Samuel Vaiter
Charles Deledalle
Gabriel Peyré
Jalal Fadili
Charles Dossal
|
+
|
The degrees of freedom of the Group Lasso for a General Design
|
2012
|
Samuel Vaiter
Charles Deledalle
Gabriel Peyré
Jalal Fadili
Charles Dossal
|
+
|
Risk estimation for matrix recovery with spectral regularization
|
2012
|
CharlesâAlban Deledalle
Samuel Vaiter
Gabriel Peyré
Jalal Fadili
Charles Dossal
|
+
|
The Degrees of Freedom of the Group Lasso
|
2012
|
Samuel Vaiter
CharlesâAlban Deledalle
Gabriel Peyré
Jalal Fadili
Charles Dossal
|
+
PDF
Chat
|
The Degrees of Freedom of the Group Lasso
|
2012
|
Samuel Vaiter
Charles Deledalle
Gabriel Peyré
Jalal Fadili
Charles Dossal
|
+
|
Robust Sparse Analysis Regularization
|
2011
|
Samuel Vaiter
Gabriel Peyré
Charles Dossal
Jalal Fadili
|
+
|
Robust Sparse Analysis Regularization
|
2011
|
Samuel Vaiter
Gabriel Peyré
Charles Dossal
Jalal Fadili
|