Muhammad Dawood

Follow

Generating author description...

Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ PDF Chat ImageNet Large Scale Visual Recognition Challenge 2015 Olga Russakovsky
Jia Deng
Hao Su
Jonathan Krause
Sanjeev Satheesh
Sean Ma
Zhiheng Huang
Andrej Karpathy
Aditya Khosla
Michael S. Bernstein
3
+ PDF Chat Hover-Net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images 2019 Simon Graham
Quoc Dang Vu
Shan E Ahmed Raza
Ayesha Azam
Yee Wah Tsang
Jin Tae Kwak
Nasir Rajpoot
3
+ PDF Chat Scribble2Label: Scribble-Supervised Cell Segmentation via Self-generating Pseudo-Labels with Consistency 2020 Hyeonsoo Lee
Won-Ki Jeong
2
+ PDF Chat Xception: Deep Learning with Depthwise Separable Convolutions 2017 François Chollet
2
+ Adam: A Method for Stochastic Optimization 2014 Diederik P. Kingma
Jimmy Ba
2
+ PDF Chat Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization 2017 Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
2
+ UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction 2018 Leland McInnes
John J. Healy
2
+ PanNuke Dataset Extension, Insights and Baselines 2020 Jevgenij Gamper
Navid Alemi Koohbanani
Simon Graham
Mostafa Jahanifar
Syed Ali Khurram
Ayesha Azam
Katherine Hewitt
Nasir Rajpoot
2
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
2
+ PDF Chat Count-ception: Counting by Fully Convolutional Redundant Counting 2017 Joseph Cohen
Geneviève Boucher
Craig A. Glastonbury
Henry Z. Lo
Yoshua Bengio
2
+ Fast Graph Representation Learning with PyTorch Geometric 2019 Matthias Fey
Jan Eric Lenssen
1
+ PDF Chat One-Class SVM with Privileged Information and Its Application to Malware Detection 2016 Evgeny Burnaev
Dmitry Smolyakov
1
+ Unifying distillation and privileged information 2016 David López-Paz
Léon Bottou
Bernhard Schölkopf
Vladimir Vapnik
1
+ PDF Chat Densely Connected Convolutional Networks 2017 Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
1
+ PDF Chat Distillation as a Defense to Adversarial Perturbations Against Deep Neural Networks 2016 Nicolas Papernot
Patrick McDaniel
Xi Wu
Somesh Jha
Ananthram Swami
1
+ PDF Chat Quantifying the effects of data augmentation and stain color normalization in convolutional neural networks for computational pathology 2019 David Tellez
Geert Litjens
Péter Bándi
Wouter Bulten
John‐Melle Bokhorst
Francesco Ciompi
Jeroen van der Laak
1
+ PDF Chat Dynamic Graph CNN for Learning on Point Clouds 2019 Yue Wang
Yongbin Sun
Ziwei Liu
Sanjay E. Sarma
Michael M. Bronstein
Justin Solomon
1
+ New nonlocal forward model for diffuse optical tomography 2019 Wenqi Lu
Jinming Duan
Joshua Deepak Veesa
Iain B. Styles
1
+ Machine Learning on Graphs: A Model and Comprehensive Taxonomy 2020 Ines Chami
Sami Abu-El-Haija
Bryan Perozzi
Christopher Ré
Kevin Murphy
1
+ Exact tests via multiple data splitting 2020 Cyrus DiCiccio
Thomas J. DiCiccio
Joseph P. Romano
1
+ XGBoost 2016 Tianqi Chen
Carlos Guestrin
1
+ Data-efficient and weakly supervised computational pathology on whole-slide images 2021 Ming Y. Lu
Drew F. K. Williamson
Tiffany Chen
Richard J. Chen
Matteo Barbieri
Faisal Mahmood
1
+ Deep Orthogonal Fusion: Multimodal Prognostic Biomarker Discovery Integrating Radiology, Pathology, Genomic, and Clinical Data. 2021 Nathaniel Braman
Jacob W. H. Gordon
Emery T. Goossens
Caleb Willis
Martin C. Stumpe
Jagadish Venkataraman
1
+ PDF Chat Predicting prostate cancer specific-mortality with artificial intelligence-based Gleason grading 2021 Ellery Wulczyn
Kunal Nagpal
Matthew R. E. Symonds
Melissa Moran
Markus Plass
Robert Reihs
Farah Nader
Fraser Elisabeth Tan
Yuannan Cai
Trissia Brown
1
+ PDF Chat Deep Orthogonal Fusion: Multimodal Prognostic Biomarker Discovery Integrating Radiology, Pathology, Genomic, and Clinical Data 2021 Nathaniel Braman
Jacob W. H. Gordon
Emery T. Goossens
Caleb Willis
Martin C. Stumpe
Jagadish Venkataraman
1
+ Modern hierarchical, agglomerative clustering algorithms 2011 Daniel Müllner
1
+ NuCLS: A scalable crowdsourcing, deep learning approach and dataset for nucleus classification, localization and segmentation 2021 Mohamed Amgad
Lamees A Atteya
Hagar Hussein
Kareem Hosny Mohammed
Ehab Hafiz
Maha AT Elsebaie
Ahmed M. Alhusseiny
Mohamed Atef AlMoslemany
Abdelmagid M. Elmatboly
Philip A. Pappalardo
1
+ Distilling the Knowledge in a Neural Network 2015 Geoffrey E. Hinton
Oriol Vinyals
Jay B. Dean
1
+ PDF Chat Deep learning in neural networks: An overview 2014 Jürgen Schmidhuber
1
+ Distilling Knowledge from Deep Networks with Applications to Healthcare Domain 2015 Zhengping Che
Sanjay Purushotham
Robinder G. Khemani
Yan Liu
1
+ PDF Chat Patch-Based Convolutional Neural Network for Whole Slide Tissue Image Classification 2016 Le Hou
Dimitris Samaras
Tahsin Kurç
Yi Gao
James Davis
Joel Saltz
1
+ PDF Chat Learning and Refining of Privileged Information-Based RNNs for Action Recognition from Depth Sequences 2017 Zhiyuan Shi
Tae‐Kyun Kim
1
+ MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 2017 Andrew Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
Marco Andreetto
Hartwig Adam
1
+ PDF Chat <scp>HER</scp>2 challenge contest: a detailed assessment of automated <scp>HER</scp>2 scoring algorithms in whole slide images of breast cancer tissues 2017 Talha Qaiser
Abhik Mukherjee
Chaitanya Reddy PB
Sai Dileep Munugoti
T. Vamsi
Tomi Pitkäaho
Taina Lehtimäki
Thomas J. Naughton
Matt Berseth
Aníbal Pedraza
1
+ Large scale distributed neural network training through online distillation 2018 Rohan Anil
Gabriel Pereyra
Alexandre Passos
Róbert Ormándi
George E. Dahl
Geoffrey E. Hinton
1
+ Graph- and finite element-based total variation models for the inverse problem in diffuse optical tomography 2019 Wenqi Lu
Jinming Duan
David Orive-Miguel
Lionel Hervé
Iain B. Styles
1