+
PDF
Chat
|
Stochastic Gradient Descent Jittering for Inverse Problems: Alleviating
the Accuracy-Robustness Tradeoff
|
2024
|
Peimeng Guan
Mark A. Davenport
|
+
|
New Equivalences between Interpolation and SVMs: Kernels and Structured Features
|
2024
|
Chiraag Kaushik
Andrew D. McRae
Mark A. Davenport
V. Sai Muthukumar
|
+
PDF
Chat
|
Robust Broadband Beamforming using Bilinear Programming
|
2024
|
Nakul Singh
Coleman DeLude
Mark A. Davenport
Justin Romberg
|
+
PDF
Chat
|
Solving Inverse Problems with Model Mismatch using Untrained Neural
Networks within Model-based Architectures
|
2024
|
Peimeng Guan
Naveed Iqbal
Mark A. Davenport
Mudassir Masood
|
+
PDF
Chat
|
Data-adaptive symmetric CUSUM for sequential change detection
|
2024
|
Nauman Ahad
Mark A. Davenport
Yao Xie
|
+
|
New Equivalences Between Interpolation and SVMs: Kernels and Structured Features
|
2023
|
Chiraag Kaushik
Andrew D. McRae
Mark A. Davenport
Vidya Muthukumar
|
+
|
Learned Proximal Operator for Solving Seismic Deconvolution Problem
|
2023
|
Peimeng Guan
Naveed Iqbal
Mark A. Davenport
Mudassir Masood
|
+
|
Distance preservation in state-space methods for detecting causal interactions in dynamical systems
|
2023
|
Matthew O’Shaughnessy
Mark A. Davenport
Christopher J. Rozell
|
+
|
Perceptual adjustment queries and an inverted measurement paradigm for low-rank metric learning
|
2023
|
Austin Xu
Andrew D. McRae
Jingyan Wang
Mark A. Davenport
Ashwin Pananjady
|
+
PDF
Chat
|
Iterative Broadband Source Localization
|
2023
|
Coleman DeLude
Rakshith S. Srinivasa
Santhosh Karnik
Christopher Hood
Mark A. Davenport
Justin Romberg
|
+
|
Slepian Beamforming: Broadband Beamforming using Streaming Least Squares
|
2023
|
Coleman DeLude
Mark A. Davenport
Justin Romberg
|
+
PDF
Chat
|
Optimal Convex Lifted Sparse Phase Retrieval and PCA With an Atomic Matrix Norm Regularizer
|
2022
|
Andrew D. McRae
Justin Romberg
Mark A. Davenport
|
+
|
Thomson’s Multitaper Method Revisited
|
2022
|
Santhosh Karnik
Justin Romberg
Mark A. Davenport
|
+
|
Active metric learning and classification using similarity queries
|
2022
|
Namrata Nadagouda
Austin Xu
Mark A. Davenport
|
+
|
Learning Sinkhorn divergences for supervised change point detection
|
2022
|
Nauman Ahad
Eva L. Dyer
Keith B. Hengen
Yao Xie
Mark A. Davenport
|
+
|
Loop Unrolled Shallow Equilibrium Regularizer (LUSER) -- A Memory-Efficient Inverse Problem Solver
|
2022
|
Peimeng Guan
Jihui Jin
Justin Romberg
Mark A. Davenport
|
+
|
Data-Adaptive Symmetric CUSUM for Sequential Change Detection
|
2022
|
Nauman Ahad
Mark A. Davenport
Yao Xie
|
+
|
Harmless interpolation in regression and classification with structured features.
|
2021
|
Andrew D. McRae
Santhosh Karnik
Mark A. Davenport
V. Sai Muthukumar
|
+
PDF
Chat
|
Deep inference of latent dynamics with spatio-temporal super-resolution
using selective backpropagation through time
|
2021
|
Zhu Feng
Andrew R. Sedler
Harrison A. Grier
Nauman Ahad
Mark A. Davenport
Matthew T. Kaufman
Andrea Giovannucci
Chethan Pandarinath
|
+
PDF
Chat
|
Semi-supervised Sequence Classification through Change Point Detection
|
2021
|
Nauman Ahad
Mark A. Davenport
|
+
|
Semi-supervised Sequence Classification through Change Point Detection
|
2021
|
Nauman Ahad
Mark A. Davenport
|
+
|
Switched Hawkes Processes
|
2021
|
Namrata Nadagouda
Mark A. Davenport
|
+
PDF
Chat
|
Improved bounds for the eigenvalues of prolate spheroidal wave functions and discrete prolate spheroidal sequences
|
2021
|
Santhosh Karnik
Justin Romberg
Mark A. Davenport
|
+
|
Thomson's Multitaper Method Revisited.
|
2021
|
Santhosh Karnik
Justin Romberg
Mark A. Davenport
|
+
|
As You Like It: Localization via Paired Comparisons
|
2021
|
Andrew K. Massimino
Mark A. Davenport
|
+
|
Deep inference of latent dynamics with spatio-temporal super-resolution using selective backpropagation through time
|
2021
|
Zhu Feng
Andrew R. Sedler
Harrison A. Grier
Nauman Ahad
Mark A. Davenport
Matthew T. Kaufman
Andrea Giovannucci
Chethan Pandarinath
|
+
|
Optimal convex lifted sparse phase retrieval and PCA with an atomic matrix norm regularizer
|
2021
|
Andrew D. McRae
Justin Romberg
Mark A. Davenport
|
+
|
Harmless interpolation in regression and classification with structured features
|
2021
|
Andrew D. McRae
Santhosh Karnik
Mark A. Davenport
Vidya Muthukumar
|
+
|
Thomson's Multitaper Method Revisited
|
2021
|
Santhosh Karnik
Justin Romberg
Mark A. Davenport
|
+
PDF
Chat
|
Simultaneous Preference and Metric Learning from Paired Comparisons
|
2020
|
Austin Xu
Mark A. Davenport
|
+
PDF
Chat
|
Low-rank matrix completion and denoising under Poisson noise
|
2020
|
Andrew D. McRae
Mark A. Davenport
|
+
|
Generative causal explanations of black-box classifiers
|
2020
|
Matthew O’Shaughnessy
Gregory Canal
Marissa Connor
Mark A. Davenport
Christopher J. Rozell
|
+
|
Sample complexity and effective dimension for regression on manifolds
|
2020
|
Andrew D. McRae
Justin Romberg
Mark A. Davenport
|
+
|
Improved bounds for the eigenvalues of prolate spheroidal wave functions and discrete prolate spheroidal sequences
|
2020
|
Santhosh Karnik
Justin Romberg
Mark A. Davenport
|
+
|
Localized sketching for matrix multiplication and ridge regression.
|
2020
|
Rakshith Sharma Srinivasa
Mark A. Davenport
Justin Romberg
|
+
PDF
Chat
|
Active Embedding Search via Noisy Paired Comparisons
|
2020
|
Gregory Canal
Andrew K. Massimino
Mark A. Davenport
Christopher J. Rozell
|
+
PDF
Chat
|
Trading Beams for Bandwidth: Imaging with Randomized Beamforming
|
2020
|
Rakshith Sharma Srinivasa
Mark A. Davenport
Justin Romberg
|
+
|
Dynamic Knowledge embedding and tracing
|
2020
|
Liangbei Xu
Mark A. Davenport
|
+
|
Simultaneous Preference and Metric Learning from Paired Comparisons
|
2020
|
Austin Xu
Mark A. Davenport
|
+
|
Sample complexity and effective dimension for regression on manifolds
|
2020
|
Andrew D. McRae
Justin Romberg
Mark A. Davenport
|
+
|
Improved bounds for the eigenvalues of prolate spheroidal wave functions and discrete prolate spheroidal sequences
|
2020
|
Santhosh Karnik
Justin Romberg
Mark A. Davenport
|
+
|
Localized sketching for matrix multiplication and ridge regression
|
2020
|
Rakshith S. Srinivasa
Mark A. Davenport
Justin Romberg
|
+
|
Semi-supervised sequence classification through change point detection
|
2020
|
Nauman Ahad
Mark A. Davenport
|
+
|
Sparse Bayesian Learning With Dynamic Filtering for Inference of Time-Varying Sparse Signals
|
2019
|
Matthew O’Shaughnessy
Mark A. Davenport
Christopher J. Rozell
|
+
|
Low-rank matrix completion and denoising under Poisson noise
|
2019
|
Andrew D. McRae
Mark A. Davenport
|
+
|
Active embedding search via noisy paired comparisons
|
2019
|
Gregory Canal
Andrew K. Massimino
Mark A. Davenport
Christopher J. Rozell
|
+
|
Trading beams for bandwidth: Imaging with randomized beamforming
|
2019
|
Rakshith Sharma Srinivasa
Mark A. Davenport
Justin Romberg
|
+
|
Low-rank matrix completion and denoising under Poisson noise
|
2019
|
Andrew D. McRae
Mark A. Davenport
|
+
|
Active embedding search via noisy paired comparisons
|
2019
|
Gregory Canal
Andrew K. Massimino
Mark A. Davenport
Christopher J. Rozell
|
+
|
Trading beams for bandwidth: Imaging with randomized beamforming
|
2019
|
Rakshith Sharma Srinivasa
Mark A. Davenport
Justin Romberg
|
+
|
Estimation of Poisson Arrival Processes Under Linear Models
|
2018
|
Michael G. Moore
Mark A. Davenport
|
+
|
ROAST: Rapid Orthogonal Approximate Slepian Transform
|
2018
|
Zhihui Zhu
Santhosh Karnik
Michael B. Wakin
Mark A. Davenport
Justin Romberg
|
+
PDF
Chat
|
A Unified Framework for Manifold Landmarking
|
2018
|
Hongteng Xu
Licheng Yu
Mark A. Davenport
Hongyuan Zha
|
+
|
Estimation of Poisson arrival processes under linear models
|
2018
|
Michael G. Moore
Mark A. Davenport
|
+
|
As you like it: Localization via paired comparisons
|
2018
|
Andrew K. Massimino
Mark A. Davenport
|
+
|
Estimation of Poisson arrival processes under linear models
|
2018
|
Michael G. Moore
Mark A. Davenport
|
+
|
Simultaneous recovery of a series of low-rank matrices by locally weighted matrix smoothing
|
2017
|
Liangbei Xu
Mark A. Davenport
|
+
|
Active manifold learning via a unified framework for manifold landmarking.
|
2017
|
Hongteng Xu
Licheng Yu
Mark A. Davenport
Hongyuan Zha
|
+
|
The Eigenvalue Distribution of Discrete Periodic Time-Frequency Limiting Operators
|
2017
|
Zhihui Zhu
Santhosh Karnik
Mark A. Davenport
Justin Romberg
Michael B. Wakin
|
+
PDF
Chat
|
The fast Slepian transform
|
2017
|
Santhosh Karnik
Zhihui Zhu
Michael B. Wakin
Justin Romberg
Mark A. Davenport
|
+
|
The geometry of random paired comparisons
|
2017
|
Andrew K. Massimino
Mark A. Davenport
|
+
|
The Fast Slepian Transform
|
2016
|
Santhosh Karnik
Zhihui Zhu
Michael B. Wakin
Justin Romberg
Mark A. Davenport
|
+
|
Constrained Adaptive Sensing
|
2016
|
Mark A. Davenport
Andrew K. Massimino
Deanna Needell
Tina Woolf
|
+
|
Analysis of wireless networks using Hawkes processes
|
2016
|
Michael G. Moore
Mark A. Davenport
|
+
|
A Hawkes' eye view of network information flow
|
2016
|
Michael G. Moore
Mark A. Davenport
|
+
|
An Overview of Low-Rank Matrix Recovery From Incomplete Observations
|
2016
|
Mark A. Davenport
Justin Romberg
|
+
|
Dynamic matrix recovery from incomplete observations under an exact low-rank constraint
|
2016
|
Liangbei Xu
Mark A. Davenport
|
+
|
The Fast Slepian Transform
|
2016
|
Santhosh Karnik
Zhihui Zhu
Michael B. Wakin
Justin Romberg
Mark A. Davenport
|
+
|
1-Bit matrix completion
|
2014
|
Mark A. Davenport
Yaniv Plan
E. van den Berg
Mary Wootters
|
+
PDF
Chat
|
Lost without a compass: Nonmetric triangulation and landmark multidimensional scaling
|
2013
|
Mark A. Davenport
|
+
PDF
Chat
|
Signal Space CoSaMP for Sparse Recovery With Redundant Dictionaries
|
2013
|
Mark A. Davenport
Deanna Needell
Michael B. Wakin
|
+
PDF
Chat
|
On the Stability and Accuracy of Least Squares Approximations
|
2013
|
Albert Cohen
Mark A. Davenport
D. Leviatan
|
+
|
1-Bit Matrix Completion
|
2012
|
Mark A. Davenport
Yaniv Plan
E. van den Berg
Mary Wootters
|
+
PDF
Chat
|
On the Fundamental Limits of Adaptive Sensing
|
2012
|
Ery Arias-Castro
Emmanuel J. Candès
Mark A. Davenport
|
+
|
How well can we estimate a sparse vector?
|
2012
|
Emmanuel J. Candès
Mark A. Davenport
|
+
PDF
Chat
|
The Pros and Cons of Compressive Sensing for Wideband Signal Acquisition: Noise Folding versus Dynamic Range
|
2012
|
Mark A. Davenport
Jason N. Laska
J Treichler
Richard G. Baraniuk
|
+
|
Signal Space CoSaMP for Sparse Recovery with Redundant Dictionaries
|
2012
|
Mark A. Davenport
Deanna Needell
Michael B. Wakin
|
+
PDF
Chat
|
Compressive binary search
|
2012
|
Mark A. Davenport
Ery Arias-Castro
|
+
|
Compressive sensing of analog signals using Discrete Prolate Spheroidal Sequences
|
2012
|
Mark A. Davenport
Michael B. Wakin
|
+
|
Compressive binary search
|
2012
|
Mark A. Davenport
Ery Arias-Castro
|
+
|
Compressive binary search
|
2012
|
Mark A. Davenport
Ery Arias-Castro
|
+
|
Signal Space CoSaMP for Sparse Recovery with Redundant Dictionaries
|
2012
|
Mark A. Davenport
Deanna Needell
Michael B. Wakin
|
+
|
1-Bit Matrix Completion
|
2012
|
Mark A. Davenport
Yaniv Plan
E. van den Berg
Mary Wootters
|
+
|
On the Fundamental Limits of Adaptive Sensing
|
2011
|
Ery Arias-Castro
Emmanuel J. Candès
Mark A. Davenport
|
+
|
On the stability and accuracy of least squares approximations
|
2011
|
Albert Cohen
Mark A. Davenport
D. Leviatan
|
+
|
Compressive Sensing of Analog Signals Using Discrete Prolate Spheroidal Sequences
|
2011
|
Mark A. Davenport
Michael B. Wakin
|
+
|
The compressive multiplexer for multi-channel compressive sensing
|
2011
|
J. P. Slavinsky
Jason N. Laska
Mark A. Davenport
Richard G. Baraniuk
|
+
|
How well can we estimate a sparse vector
|
2011
|
Emmanuel J. Candès
Mark A. Davenport
|
+
|
How well can we estimate a sparse vector?
|
2011
|
Emmanuel J. Candès
Mark A. Davenport
|
+
|
On the stability and accuracy of least squares approximations
|
2011
|
Albert Cohen
Mark A. Davenport
Leviatan Dany
|
+
|
Compressive Sensing of Analog Signals Using Discrete Prolate Spheroidal Sequences
|
2011
|
Mark A. Davenport
Michael B. Wakin
|
+
PDF
Chat
|
Analysis of Orthogonal Matching Pursuit Using the Restricted Isometry Property
|
2010
|
Mark A. Davenport
Michael B. Wakin
|
+
|
A Theoretical Analysis of Joint Manifolds
|
2009
|
Mark A. Davenport
Chinmay Hegde
Marco F. Duarte
Richard G. Baraniuk
|
+
|
A simple proof that random matrices are democratic
|
2009
|
Mark A. Davenport
Jason N. Laska
Petros T. Boufounos
Richard G. Baraniuk
|
+
|
Analysis of Orthogonal Matching Pursuit using the Restricted Isometry Property
|
2009
|
Mark A. Davenport
Michael B. Wakin
|
+
PDF
Chat
|
A Simple Proof of the Restricted Isometry Property for Random Matrices
|
2008
|
Richard G. Baraniuk
Mark A. Davenport
Ronald DeVore
Michael B. Wakin
|
+
|
Error Control for Support Vector Machines
|
2007
|
Mark A. Davenport
|
+
PDF
Chat
|
Learning Minimum Volume Sets with Support Vector Machines
|
2006
|
Mark A. Davenport
Richard G. Baraniuk
Clayton Scott
|
+
|
The Johnson-Lindenstrauss Lemma Meets Compressed Sensing
|
2006
|
Richard G. Baraniuk
Mark A. Davenport
Ronald DeVore
Michael B. Wakin
|