+
PDF
Chat
|
Second-order linear recurrences with identically distributed residues modulo p^e
|
2024
|
Lawrence Somer
Michal Křı́žek
|
+
PDF
Chat
|
Regular Tessellations of Maximally Symmetric Hyperbolic Manifolds
|
2024
|
Jan Brandts
Michal Křı́žek
Lawrence Somer
|
+
|
On Tetrahedral and Square Pyramidal Numbers
|
2023
|
Lawrence Somer
Michal Křı́žek
|
+
|
Frobenius, Lucas, and Dickson Pseudoprimes
|
2022
|
Lawrence Somer
Michal Křı́žek
|
+
|
Second-Order Linear Recurrences Having Arbitrarily Large Defect Modulo <i>p</i>
|
2021
|
Lawrence Somer
Michal Křı́žek
|
+
|
Fibonacci and Lucas Numbers
|
2021
|
Michal Křı́žek
Lawrence Somer
Alena Šolcová
|
+
|
Special Types of Primes
|
2021
|
Michal Křı́žek
Lawrence Somer
Alena Šolcová
|
+
|
From Great Discoveries in Number Theory to Applications
|
2021
|
Michal Křı́žek
Lawrence Somer
Alena Šolcová
|
+
|
Prime and Composite Numbers
|
2021
|
Michal Křı́žek
Lawrence Somer
Alena Šolcová
|
+
|
Further Applications of Number Theory
|
2021
|
Michal Křı́žek
Lawrence Somer
Alena Šolcová
|
+
|
Properties of Prime Numbers
|
2021
|
Michal Křı́žek
Lawrence Somer
Alena Šolcová
|
+
|
Further Special Types of Integers
|
2021
|
Michal Křı́žek
Lawrence Somer
Alena Šolcová
|
+
|
On a Connection of Number Theory with Graph Theory
|
2021
|
Michal Křı́žek
Lawrence Somer
Alena Šolcová
|
+
|
Pseudoprimes
|
2021
|
Michal Křı́žek
Lawrence Somer
Alena Šolcová
|
+
|
Nondefective Integers With Respect to Certain Lucas Sequences of the Second Kind.
|
2018
|
Lawrence Somer
Michal Křı́žek
|
+
|
Primes in Shifted Sums of Lucas Sequences.
|
2017
|
Lenny Jones
Lawrence Somer
|
+
|
On Primes in Lucas Sequences
|
2015
|
Lawrence Somer
Michal Křížek
|
+
|
On the symmetric digraphs from the <i>k</i>th power mapping on finite commutative rings
|
2014
|
Guixin Deng
Lawrence Somer
|
+
|
Easy Criteria to Determine if a Prime Divides Certain Second-Order Recurrences
|
2013
|
Lawrence Somer
Michal Křı́žek
|
+
|
Power Digraphs Modulo <i>n</i> are Symmetric of order <i>M</i> if and only if <i>M</i> is Square Free
|
2012
|
Lawrence Somer
Michal Křı́žek
|
+
PDF
Chat
|
The structure of digraphs associated with the congruence x k ≡ y (mod n)
|
2011
|
Lawrence Somer
Michal Křı́žek
|
+
|
On the Complexity of Testing Elite Primes
|
2011
|
Michal Křı́žek
Florian Luca
Igor E. Shparlinski
Lawrence Somer
|
+
|
Lucas ( <i>a</i> <sub>1</sub> , <i>a</i> <sub>2</sub> , …, <i> a <sub>k</sub> </i> = ±1) Pseudoprimes
|
2010
|
Lawrence Somer
Curtis Cooper
|
+
PDF
Chat
|
Stability Classes of Second-Order Linear Recurrences Modulo $2^k$ II
|
2010
|
Walter Carlip
Lawrence Somer
|
+
|
Lucas Pseudoprimes of Special Types
|
2008
|
Lawrence Somer
|
+
|
On symmetric digraphs of the congruence <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si7.gif" display="inline" overflow="scroll"><mml:msup><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>k</mml:mi></mml:mrow></mml:msup><mml:mo>≡</mml:mo><mml:mi>y</mml:mi><mml:mspace width="0.16667em" /><mml:mrow><mml:mo>(</mml:mo><mml:mo>mod</mml:mo><mml:mspace width="0.334em" /><mml:mi>n</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math>
|
2008
|
Lawrence Somer
Michal Křı́žek
|
+
PDF
Chat
|
Square-free Lucas d-pseudoprimes and Carmichael-Lucas numbers
|
2007
|
Walter Carlip
Lawrence Somer
|
+
PDF
Chat
|
Primitive Lucas d-pseudoprimes and Carmichael–Lucas numbers
|
2007
|
Walter Carlip
Lawrence Somer
|
+
|
On semiregular digraphs of the congruence $x^k\equiv y \hspace{4.44443pt}(\@mod \; n)$
|
2007
|
Lawrence Somer
Michal Křı́žek
|
+
|
Lucas Sequences for which 4 | ø (|u <sub>n</sub> |) for almost all <i>n</i>
|
2006
|
Florian Luca
Lawrence Somer
|
+
|
Structure of digraphs associated with quadratic congruences with composite moduli
|
2006
|
Lawrence Somer
Michal Křı́žek
|
+
|
Lucas Sequences { <i> U <sub>Κ</sub> </i> } for which <i>U</i> <sub> 2 <i>p</i> </sub> and <i> U <sub>p</sub> </i> are Pseudoprimes for Almost all Primes <i>p</i>
|
2006
|
Lawrence Somer
|
+
PDF
Chat
|
On a Connection of Number Theory with Graph Theory
|
2004
|
Lawrence Somer
Michal Křı́žek
|
+
|
A Further Note on Lucasian Numbers
|
2004
|
Lawrence Somer
|
+
|
The Existence of Special Multipliers of Second-Order Recurrence Sequences
|
2003
|
Walter Carlip
Lawrence Somer
|
+
|
LUCAS SEQUENCES {Uk} FOR WHICH U2p AND Up ARE PSEUDOPRIMES FOR ALMOST ALL PRIMES p
|
2003
|
Lawrence Somer
|
+
|
17 necessary and sufficient conditions for the primality of Fermat numbers
|
2003
|
Michal Křı́žek
Lawrence Somer
|
+
|
On the Convergence of Series of Reciprocals of Primes Related to the Fermat Numbers
|
2002
|
Michal Křı́žek
Florian Luca
Lawrence Somer
|
+
|
Connections of Fermat Numbers with Pascal’s Triangle
|
2002
|
Michal Křı́žek
Florian Luca
Lawrence Somer
|
+
|
The Irrationality of the Sum of Some Reciprocals
|
2002
|
Michal Křı́žek
Florian Luca
Lawrence Somer
|
+
|
Generalizations of Fermat Numbers
|
2002
|
Michal Křı́žek
Florian Luca
Lawrence Somer
|
+
|
The Most Beautiful Theorems on Fermat Numbers
|
2002
|
Michal Křı́žek
Florian Luca
Lawrence Somer
|
+
|
Fermat Primes and a Diophantine Equation
|
2002
|
Michal Křı́žek
Florian Luca
Lawrence Somer
|
+
|
Fermat Number Transform and Other Applications
|
2002
|
Michal Křı́žek
Florian Luca
Lawrence Somer
|
+
|
Basic Properties of Fermat Numbers
|
2002
|
Michal Křı́žek
Florian Luca
Lawrence Somer
|
+
|
Euclidean Construction of the Regular Heptadecagon
|
2002
|
Michal Křı́žek
Florian Luca
Lawrence Somer
|
+
|
Primality of Fermat Numbers
|
2002
|
Michal Křı́žek
Florian Luca
Lawrence Somer
|
+
|
Fermat’s Little Theorem, Pseudoprimes, and Superpseudoprimes
|
2002
|
Michal Křı́žek
Florian Luca
Lawrence Somer
|
+
|
The Proof of Gauss’s Theorem
|
2002
|
Michal Křı́žek
Florian Luca
Lawrence Somer
|
+
|
Factors of Fermat Numbers
|
2002
|
Michal Křı́žek
Florian Luca
Lawrence Somer
|
+
|
Divisibility of Fermat Numbers
|
2002
|
Michal Křı́žek
Florian Luca
Lawrence Somer
|
+
|
17 lectures on Fermat numbers : from number theory to geometry
|
2001
|
Michal Křı́žek
Florian Luca
Lawrence Somer
Alena Šolcová
|
+
PDF
Chat
|
A necessary and sufficient condition for the primality of Fermat numbers
|
2001
|
Michal Křı́žek
Lawrence Somer
|
+
|
17 Lectures on Fermat Numbers
|
2001
|
Michal Křı́žek
Florian Luca
Lawrence Somer
|
+
|
Special Multipliers of Lucas Sequences Modulo pr
|
1999
|
Lawrence Somer
|
+
|
Pseudoprimes, Perfect Numbers, and a Problem of Lehmer
|
1998
|
Walter Carlip
Eliot Jacobson
Lawrence Somer
|
+
|
On Lucas d-Pseudoprimes
|
1998
|
Lawrence Somer
|
+
|
A Criterion For Stability of Two-Term Recurrence Sequences Modulo Odd Primes
|
1998
|
Walter Carlip
Eliot Jacobson
Lawrence Somer
|
+
|
On Lucasian Numbers
|
1997
|
Peter Hilton
Jean Pedersen
Lawrence Somer
|
+
|
Periodicity properties of <i>k</i>th order linear recurrences whose characteristic polynomial splits completely over a finite field, II
|
1996
|
Lawrence Somer
|
+
|
Distribution of Residues of Certain Second-Order Linear Recurrences Modulo p-III
|
1996
|
Lawrence Somer
|
+
|
Divisibility of Terms in Lucas Sequences of the Second Kind by Their Subscripts
|
1996
|
Lawrence Somer
|
+
|
Periodicity properties of 𝑘th order linear recurrences whose characteristic polynomial splits completely over a finite field. I
|
1994
|
Lawrence Somer
|
+
|
Upper Bounds for Frequencies of Elements in Second-Order Recurrences over A Finite Field
|
1993
|
Lawrence Somer
|
+
|
Possible Restricted Periods of Certain Lucas Sequences Modulo P
|
1991
|
Lawrence Somer
|
+
|
On Even Fibonacci Pseudoprimes
|
1991
|
Lawrence Somer
|
+
|
Period Patterns of Certain Second-Order Linear Recurrences Modulo a Prime
|
1991
|
David Banks
Lawrence Somer
|
+
|
On Fermat d-pseudoprimes
|
1989
|
Lawrence Somer
|
+
|
Linear Recurrences Having Almost All Primes as Maximal Divisors
|
1986
|
Lawrence Somer
|
+
|
The divisibility and modular properties of KTH-order linear recurrences over the ring of integers of an algebraic number fields with respect of prime ideals
|
1985
|
Lawrence Somer
|
+
|
The Divisibility Properties of Primary Lucas Recurrences with Respect to Primes
|
1980
|
Lawrence Somer
|
+
|
The Fibonacci Ratios <i>F</i> <sub> <i>k</i> +1 </sub> / <i>F</i> <sub> <i>k</i> </sub> Modulo <i>p</i>
|
1975
|
Lawrence Somer
|
+
|
The Fibonacci Group and a new proof that F <sub>p−(5/p)</sub> ≡ 0 (mod p)
|
1972
|
Lawrence Somer
|