Lawrence Somer

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Second-order linear recurrences with identically distributed residues modulo p^e 2024 Lawrence Somer
Michal Křı́žek
+ PDF Chat Regular Tessellations of Maximally Symmetric Hyperbolic Manifolds 2024 Jan Brandts
Michal Křı́žek
Lawrence Somer
+ On Tetrahedral and Square Pyramidal Numbers 2023 Lawrence Somer
Michal Křı́žek
+ Frobenius, Lucas, and Dickson Pseudoprimes 2022 Lawrence Somer
Michal Křı́žek
+ Second-Order Linear Recurrences Having Arbitrarily Large Defect Modulo <i>p</i> 2021 Lawrence Somer
Michal Křı́žek
+ Fibonacci and Lucas Numbers 2021 Michal Křı́žek
Lawrence Somer
Alena Šolcová
+ Special Types of Primes 2021 Michal Křı́žek
Lawrence Somer
Alena Šolcová
+ From Great Discoveries in Number Theory to Applications 2021 Michal Křı́žek
Lawrence Somer
Alena Šolcová
+ Prime and Composite Numbers 2021 Michal Křı́žek
Lawrence Somer
Alena Šolcová
+ Further Applications of Number Theory 2021 Michal Křı́žek
Lawrence Somer
Alena Šolcová
+ Properties of Prime Numbers 2021 Michal Křı́žek
Lawrence Somer
Alena Šolcová
+ Further Special Types of Integers 2021 Michal Křı́žek
Lawrence Somer
Alena Šolcová
+ On a Connection of Number Theory with Graph Theory 2021 Michal Křı́žek
Lawrence Somer
Alena Šolcová
+ Pseudoprimes 2021 Michal Křı́žek
Lawrence Somer
Alena Šolcová
+ Nondefective Integers With Respect to Certain Lucas Sequences of the Second Kind. 2018 Lawrence Somer
Michal Křı́žek
+ Primes in Shifted Sums of Lucas Sequences. 2017 Lenny Jones
Lawrence Somer
+ On Primes in Lucas Sequences 2015 Lawrence Somer
Michal Křížek
+ On the symmetric digraphs from the <i>k</i>th power mapping on finite commutative rings 2014 Guixin Deng
Lawrence Somer
+ Easy Criteria to Determine if a Prime Divides Certain Second-Order Recurrences 2013 Lawrence Somer
Michal Křı́žek
+ Power Digraphs Modulo <i>n</i> are Symmetric of order <i>M</i> if and only if <i>M</i> is Square Free 2012 Lawrence Somer
Michal Křı́žek
+ PDF Chat The structure of digraphs associated with the congruence x k ≡ y (mod n) 2011 Lawrence Somer
Michal Křı́žek
+ On the Complexity of Testing Elite Primes 2011 Michal Křı́žek
Florian Luca
Igor E. Shparlinski
Lawrence Somer
+ Lucas ( <i>a</i> <sub>1</sub> , <i>a</i> <sub>2</sub> , …, <i> a <sub>k</sub> </i> = ±1) Pseudoprimes 2010 Lawrence Somer
Curtis Cooper
+ PDF Chat Stability Classes of Second-Order Linear Recurrences Modulo $2^k$ II 2010 Walter Carlip
Lawrence Somer
+ Lucas Pseudoprimes of Special Types 2008 Lawrence Somer
+ On symmetric digraphs of the congruence <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si7.gif" display="inline" overflow="scroll"><mml:msup><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>k</mml:mi></mml:mrow></mml:msup><mml:mo>≡</mml:mo><mml:mi>y</mml:mi><mml:mspace width="0.16667em" /><mml:mrow><mml:mo>(</mml:mo><mml:mo>mod</mml:mo><mml:mspace width="0.334em" /><mml:mi>n</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math> 2008 Lawrence Somer
Michal Křı́žek
+ PDF Chat Square-free Lucas d-pseudoprimes and Carmichael-Lucas numbers 2007 Walter Carlip
Lawrence Somer
+ PDF Chat Primitive Lucas d-pseudoprimes and Carmichael–Lucas numbers 2007 Walter Carlip
Lawrence Somer
+ On semiregular digraphs of the congruence $x^k\equiv y \hspace{4.44443pt}(\@mod \; n)$ 2007 Lawrence Somer
Michal Křı́žek
+ Lucas Sequences for which 4 | ø (|u <sub>n</sub> |) for almost all <i>n</i> 2006 Florian Luca
Lawrence Somer
+ Structure of digraphs associated with quadratic congruences with composite moduli 2006 Lawrence Somer
Michal Křı́žek
+ Lucas Sequences { <i> U <sub>Κ</sub> </i> } for which <i>U</i> <sub> 2 <i>p</i> </sub> and <i> U <sub>p</sub> </i> are Pseudoprimes for Almost all Primes <i>p</i> 2006 Lawrence Somer
+ PDF Chat On a Connection of Number Theory with Graph Theory 2004 Lawrence Somer
Michal Křı́žek
+ A Further Note on Lucasian Numbers 2004 Lawrence Somer
+ The Existence of Special Multipliers of Second-Order Recurrence Sequences 2003 Walter Carlip
Lawrence Somer
+ LUCAS SEQUENCES {Uk} FOR WHICH U2p AND Up ARE PSEUDOPRIMES FOR ALMOST ALL PRIMES p 2003 Lawrence Somer
+ 17 necessary and sufficient conditions for the primality of Fermat numbers 2003 Michal Křı́žek
Lawrence Somer
+ On the Convergence of Series of Reciprocals of Primes Related to the Fermat Numbers 2002 Michal Křı́žek
Florian Luca
Lawrence Somer
+ Connections of Fermat Numbers with Pascal’s Triangle 2002 Michal Křı́žek
Florian Luca
Lawrence Somer
+ The Irrationality of the Sum of Some Reciprocals 2002 Michal Křı́žek
Florian Luca
Lawrence Somer
+ Generalizations of Fermat Numbers 2002 Michal Křı́žek
Florian Luca
Lawrence Somer
+ The Most Beautiful Theorems on Fermat Numbers 2002 Michal Křı́žek
Florian Luca
Lawrence Somer
+ Fermat Primes and a Diophantine Equation 2002 Michal Křı́žek
Florian Luca
Lawrence Somer
+ Fermat Number Transform and Other Applications 2002 Michal Křı́žek
Florian Luca
Lawrence Somer
+ Basic Properties of Fermat Numbers 2002 Michal Křı́žek
Florian Luca
Lawrence Somer
+ Euclidean Construction of the Regular Heptadecagon 2002 Michal Křı́žek
Florian Luca
Lawrence Somer
+ Primality of Fermat Numbers 2002 Michal Křı́žek
Florian Luca
Lawrence Somer
+ Fermat’s Little Theorem, Pseudoprimes, and Superpseudoprimes 2002 Michal Křı́žek
Florian Luca
Lawrence Somer
+ The Proof of Gauss’s Theorem 2002 Michal Křı́žek
Florian Luca
Lawrence Somer
+ Factors of Fermat Numbers 2002 Michal Křı́žek
Florian Luca
Lawrence Somer
+ Divisibility of Fermat Numbers 2002 Michal Křı́žek
Florian Luca
Lawrence Somer
+ 17 lectures on Fermat numbers : from number theory to geometry 2001 Michal Křı́žek
Florian Luca
Lawrence Somer
Alena Šolcová
+ PDF Chat A necessary and sufficient condition for the primality of Fermat numbers 2001 Michal Křı́žek
Lawrence Somer
+ 17 Lectures on Fermat Numbers 2001 Michal Křı́žek
Florian Luca
Lawrence Somer
+ Special Multipliers of Lucas Sequences Modulo pr 1999 Lawrence Somer
+ Pseudoprimes, Perfect Numbers, and a Problem of Lehmer 1998 Walter Carlip
Eliot Jacobson
Lawrence Somer
+ On Lucas d-Pseudoprimes 1998 Lawrence Somer
+ A Criterion For Stability of Two-Term Recurrence Sequences Modulo Odd Primes 1998 Walter Carlip
Eliot Jacobson
Lawrence Somer
+ On Lucasian Numbers 1997 Peter Hilton
Jean Pedersen
Lawrence Somer
+ Periodicity properties of <i>k</i>th order linear recurrences whose characteristic polynomial splits completely over a finite field, II 1996 Lawrence Somer
+ Distribution of Residues of Certain Second-Order Linear Recurrences Modulo p-III 1996 Lawrence Somer
+ Divisibility of Terms in Lucas Sequences of the Second Kind by Their Subscripts 1996 Lawrence Somer
+ Periodicity properties of 𝑘th order linear recurrences whose characteristic polynomial splits completely over a finite field. I 1994 Lawrence Somer
+ Upper Bounds for Frequencies of Elements in Second-Order Recurrences over A Finite Field 1993 Lawrence Somer
+ Possible Restricted Periods of Certain Lucas Sequences Modulo P 1991 Lawrence Somer
+ On Even Fibonacci Pseudoprimes 1991 Lawrence Somer
+ Period Patterns of Certain Second-Order Linear Recurrences Modulo a Prime 1991 David Banks
Lawrence Somer
+ On Fermat d-pseudoprimes 1989 Lawrence Somer
+ Linear Recurrences Having Almost All Primes as Maximal Divisors 1986 Lawrence Somer
+ The divisibility and modular properties of KTH-order linear recurrences over the ring of integers of an algebraic number fields with respect of prime ideals 1985 Lawrence Somer
+ The Divisibility Properties of Primary Lucas Recurrences with Respect to Primes 1980 Lawrence Somer
+ The Fibonacci Ratios <i>F</i> <sub> <i>k</i> +1 </sub> / <i>F</i> <sub> <i>k</i> </sub> Modulo <i>p</i> 1975 Lawrence Somer
+ The Fibonacci Group and a new proof that F <sub>p−(5/p)</sub> ≡ 0 (mod p) 1972 Lawrence Somer
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ On the Numerical Factors of the Arithmetic Forms α n ± β n 1913 R. D. Carmichael
14
+ An Extended Theory of Lucas' Functions 1930 D. H. Lehmer
11
+ Prime divisors of second order recurring sequences 1954 Morgan Ward
7
+ 17 lectures on Fermat numbers : from number theory to geometry 2001 Michal Křı́žek
Florian Luca
Lawrence Somer
Alena Šolcová
6
+ Theorie des Fonctions Numeriques Simplement Periodiques 1878 Édouard Lucas
6
+ The New Book of Prime Number Records 1996 Paulo Ribenboim
5
+ Applications of Fibonacci Numbers. 1989 C. T. Gray
Ανδρέας Ν. Φιλίππου
A. F. Horadam
Gerald E. Bergum
5
+ An Introduction to the Theory of Numbers. 1961 W. J. LeVeque
Ivan Niven
Herbert S. Zuckerman
5
+ 17 Lectures on Fermat Numbers 2001 Michal Křı́žek
Florian Luca
Lawrence Somer
5
+ PDF Chat On a Connection of Number Theory with Graph Theory 2004 Lawrence Somer
Michal Křı́žek
5
+ PDF Chat Existence of primitive divisors of Lucas and Lehmer numbers 2001 Yonatan Bilu
Guillaume Hanrot
Paul Voutier
5
+ Divisibility of Terms in Lucas Sequences of the Second Kind by Their Subscripts 1996 Lawrence Somer
4
+ The divisibility and modular properties of KTH-order linear recurrences over the ring of integers of an algebraic number fields with respect of prime ideals 1985 Lawrence Somer
4
+ PDF Chat On Numbers Analogous to the Carmichael Numbers 1977 Hywel C Williams
4
+ PDF Chat Lucas pseudoprimes 1980 Robert Baillie
Samuel S. Wagstaff
4
+ PDF Chat Symmetry of iteration graphs 2008 Walter Carlip
Martina Mincheva
4
+ PDF Chat Unbounded stability of two-term recurrence sequences modulo $2^k$ 1996 Walter Carlip
Eliot Jacobson
3
+ PDF Chat The intrinsic divisors of Lehmer numbers in the case of negative discriminant 1962 Andrzej Schinzel
3
+ The graph of the square mapping on the prime fields 1996 T. D. Rogers
3
+ On the Divisibility Properties of Fibonacci Numbers 1966 John H. Halton
3
+ PDF Chat A lower bound for the counting function of Lucas pseudoprimes 1988 Péter L. Erdős
Péter Kiss
Andràs Sárközy
3
+ PDF Chat An Introduction to the Theory of Numbers 1946 E. C. T.
3
+ An Introduction to the Theory of Numbers. By G. H. Hardy and E. M. Wright. 2nd edition. Pp. xvi, 407 25s. 1945. (Oxford) 1946 T. A. A. B.
3
+ PDF Chat Frobenius pseudoprimes 2000 Jon Grantham
3
+ PDF Chat A distribution property for linear recurrence of the second order 1975 Richard T. Bumby
3
+ On symmetric digraphs of the congruence <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si7.gif" display="inline" overflow="scroll"><mml:msup><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mi>k</mml:mi></mml:mrow></mml:msup><mml:mo>≡</mml:mo><mml:mi>y</mml:mi><mml:mspace width="0.16667em" /><mml:mrow><mml:mo>(</mml:mo><mml:mo>mod</mml:mo><mml:mspace width="0.334em" /><mml:mi>n</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math> 2008 Lawrence Somer
Michal Křı́žek
3
+ On the Determination of the Zeros of the Fibonacci Sequence 1966 Robert P. Backstrom
3
+ Structure of digraphs associated with quadratic congruences with composite moduli 2006 Lawrence Somer
Michal Křı́žek
2
+ PDF Chat The distribution of second order linear recurrence sequences mod $2^m$ 1998 Mark Morgan
2
+ On the symmetric digraphs from powers modulo <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mi>n</mml:mi></mml:math> 2011 Guixin Deng
Pingzhi Yuan
2
+ A Criterion For Stability of Two-Term Recurrence Sequences Modulo Odd Primes 1998 Walter Carlip
Eliot Jacobson
Lawrence Somer
2
+ Upper Bounds for Frequencies of Elements in Second-Order Recurrences over A Finite Field 1993 Lawrence Somer
2
+ On Lucasian Numbers 1997 Peter Hilton
Jean Pedersen
Lawrence Somer
2
+ PDF Chat Note on a new number theory function 1910 R. D. Carmichael
2
+ PDF Chat On the Diophantine equation $ax^{2t}+bx^ty+cy^2=d$ and pure powers in recurrence sequences. 1983 T. N. Shorey
C. L. Stewart
2
+ Elementary Number Theory: Fourth Edition 1997 David Burton
2
+ The Fibonacci Matrix Modulo m 1963 Donald W. Robinson
2
+ Groups, Graphs, and Fermat's Last Theorem 1967 Steven Bryant
2
+ Possible Restricted Periods of Certain Lucas Sequences Modulo P 1991 Lawrence Somer
2
+ Arithmetical progressions formed by Lucas pseudoprimes 1998 A. Rotkiewicz
2
+ On Lucas pseudoprimes with a prescribed value of the Jacobi symbol 2000 A. Rotkiewicz
Andrzej Schinzel
2
+ Applications d'un corps fini dans lui-même 1985 Guy Chassé
2
+ PDF Chat On primitive prime factors of Lehmer numbers I 1963 Andrzej Schinzel
2
+ PDF Chat Symmetric Digraphs from Powers Modulo &amp;lt;i&amp;gt;n&amp;lt;/i&amp;gt; 2011 Guixin Deng
Pingzhi Yuan
2
+ PDF Chat An introduction to the theory of numbers 1960 G. H. Hardy
2
+ On the quadratic character of some quadratic surds. 1971 Emma Lehmer
2
+ Combinatorial cycles of a polynomial map over a commutative field 1986 Guy Chassé
2
+ PDF Chat Linear divisibility sequences 1937 Morgan Ward
1
+ The Most Beautiful Theorems on Fermat Numbers 2002 Michal Křı́žek
Florian Luca
Lawrence Somer
1
+ On the Convergence of Series of Reciprocals of Primes Related to the Fermat Numbers 2002 Michal Křı́žek
Florian Luca
Lawrence Somer
1