Allan Zhou

Follow

Generating author description...

All published works
Action Title Year Authors
+ PDF Chat Adaptive Data Optimization: Dynamic Sample Selection with Scaling Laws 2024 Yiding Jiang
Allan Zhou
Zhili Feng
Sadhika Malladi
J. Zico Kolter
+ AutoFT: Robust Fine-Tuning by Optimizing Hyperparameters on OOD Data 2024 Caroline Choi
Yoonho Lee
Annie Chen
Allan Zhou
Aditi Raghunathan
Chelsea Finn
+ PDF Chat NeRF in the Palm of Your Hand: Corrective Augmentation for Robotics via Novel-View Synthesis 2023 Allan Zhou
Moo Jin Kim
Lirui Wang
Pete Florence
Chelsea Finn
+ NeRF in the Palm of Your Hand: Corrective Augmentation for Robotics via Novel-View Synthesis 2023 Allan Zhou
Moo Jin Kim
Lirui Wang
Pete Florence
Chelsea Finn
+ Permutation Equivariant Neural Functionals 2023 Allan Zhou
Kaien Yang
Kaylee Burns
Yiding Jiang
Samuel Sokota
J. Zico Kolter
Chelsea Finn
+ Neural Functional Transformers 2023 Allan Zhou
Kaien Yang
Yiding Jiang
Kaylee Burns
Winnie Xu
Samuel Sokota
J. Zico Kolter
Chelsea Finn
+ Just Ask for Calibration: Strategies for Eliciting Calibrated Confidence Scores from Language Models Fine-Tuned with Human Feedback 2023 Katherine Tian
Eric Mitchell
Allan Zhou
Archit Sharma
Rafael Rafailov
Huaxiu Yao
Chelsea Finn
Christopher D. Manning
+ Simple Embodied Language Learning as a Byproduct of Meta-Reinforcement Learning 2023 Evan Zheran Liu
Sahaana Suri
Tong Mu
Allan Zhou
Chelsea Finn
+ Neural Processing of Tri-Plane Hybrid Neural Fields 2023 Adriano Cardace
Pierluigi Zama Ramirez
Francesco Ballerini
Allan Zhou
Samuele Salti
Luigi Di Stefano
+ Fleet Policy Learning via Weight Merging and An Application to Robotic Tool-Use 2023 Lirui Wang
Kaiqing Zhang
Allan Zhou
Max Simchowitz
Russ Tedrake
+ PDF Chat Just Ask for Calibration: Strategies for Eliciting Calibrated Confidence Scores from Language Models Fine-Tuned with Human Feedback 2023 Katherine Tian
Eric Mitchell
Allan Zhou
Archit Sharma
Rafael Rafailov
Huaxiu Yao
Chelsea Finn
Christopher D. Manning
+ Policy Architectures for Compositional Generalization in Control 2022 Allan Zhou
Vikash Kumar
Chelsea Finn
Aravind Rajeswaran
+ Do Deep Networks Transfer Invariances Across Classes? 2022 Allan Zhou
Fahim Tajwar
Alexander Robey
Tom Knowles
George J. Pappas
Hamed Hassani
Chelsea Finn
+ Multi-Domain Long-Tailed Learning by Augmenting Disentangled Representations 2022 Huaxiu Yao
Xinyu Yang
Allan Zhou
Chelsea Finn
+ A Project on Cyclic Ordering of Some Families of Graphs 2022 Cedric Huchuan Xia
Joe Zhang
Allan Zhou
+ Unsupervised language models for disease variant prediction 2022 Allan Zhou
Nicholas C. Landolfi
Daniel O’Neill
+ PDF Chat Noether Networks: Meta-Learning Useful Conserved Quantities 2021 Ferran Alet
Dylan Doblar
Allan Zhou
Joshua B. Tenenbaum
Kenji Kawaguchi
Chelsea Finn
+ Discriminator Augmented Model-Based Reinforcement Learning 2021 Behzad Haghgoo
Allan Zhou
Archit Sharma
Chelsea Finn
+ Noether Networks: Meta-Learning Useful Conserved Quantities 2021 Ferran Alet
Dylan Doblar
Allan Zhou
Joshua B. Tenenbaum
Kenji Kawaguchi
Chelsea Finn
+ Watch, Try, Learn: Meta-Learning from Demonstrations and Rewards 2020 Allan Zhou
Eric Jang
Daniel Kappler
Alex Herzog
Mohi Khansari
Paul Wohlhart
Yunfei Bai
Mrinal Kalakrishnan
Sergey Levine
Chelsea Finn
+ Meta-Learning Symmetries by Reparameterization 2020 Allan Zhou
Tom Knowles
Chelsea Finn
+ Watch, Try, Learn: Meta-Learning from Demonstrations and Reward 2019 Allan Zhou
Eric Jang
Daniel Kappler
Alex Herzog
Mohi Khansari
Paul Wohlhart
Yunfei Bai
Mrinal Kalakrishnan
Sergey Levine
Chelsea Finn
+ PDF Chat Cost Functions for Robot Motion Style 2018 Allan Zhou
Anca D. Dragan
+ Cost Functions for Robot Motion Style 2018 Allan Zhou
Anca D. Dragan
+ PDF Chat Expressive Robot Motion Timing 2017 Allan Zhou
Dylan Hadfield-Menell
Anusha Nagabandi
Anca D. Dragan
Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization 2016 Chelsea Finn
Sergey Levine
Pieter Abbeel
3
+ Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks 2017 Chelsea Finn
Pieter Abbeel
Sergey Levine
3
+ Learning to Learn 1998 Jonathan Baxter
3
+ Learning Complex Dexterous Manipulation with Deep Reinforcement Learning and Demonstrations 2018 Aravind Rajeswaran
Vikash Kumar
Abhishek Gupta
Giulia Vezzani
John Schulman
Emanuel Todorov
Sergey Levine
3
+ A Simple Neural Attentive Meta-Learner 2017 Nikhil Mishra
Mostafa Rohaninejad
Xi Chen
Pieter Abbeel
2
+ Evolved Policy Gradients 2018 Rein Houthooft
Richard Y. Chen
Phillip Isola
Bradly C. Stadie
Filip Wolski
Jonathan Ho
Pieter Abbeel
2
+ Learning to reinforcement learn 2016 Jane X. Wang
Zeb Kurth‐Nelson
Dhruva Tirumala
Hubert Soyer
Joel Z. Leibo
Rémi Munos
Charles Blundell
Dharshan Kumaran
Matt Botvinick
2
+ Deep reinforcement learning from human preferences 2017 Paul F. Christiano
Jan Leike
T. B. Brown
Miljan Martic
Shane Legg
Dario Amodei
2
+ PDF Chat Overcoming Exploration in Reinforcement Learning with Demonstrations 2018 Ashvin Nair
Bob McGrew
Marcin Andrychowicz
Wojciech Zaremba
Pieter Abbeel
2
+ One-Shot Imitation from Observing Humans via Domain-Adaptive Meta-Learning 2018 Tianhe Yu
Chelsea Finn
Sudeep Dasari
Annie Xie
Tianhao Zhang
Pieter Abbeel
Sergey Levine
2
+ Deep reinforcement learning from human preferences 2017 Paul Christiano
Jan Leike
T. B. Brown
Miljan Martic
Shane Legg
Dario Amodei
2
+ Learning to Learn: Meta-Critic Networks for Sample Efficient Learning 2017 Flood Sung
Zhang Li
Tao Xiang
Timothy M. Hospedales
Yongxin Yang
2
+ Some Considerations on Learning to Explore via Meta-Reinforcement Learning 2018 Bradly C. Stadie
Ge Yang
Rein Houthooft
Xi Chen
Yan Duan
Yuhuai Wu
Pieter Abbeel
Ilya Sutskever
2
+ PDF Chat ImageNet Large Scale Visual Recognition Challenge 2015 Olga Russakovsky
Jia Deng
Hao Su
Jonathan Krause
Sanjeev Satheesh
Sean Ma
Zhiheng Huang
Andrej Karpathy
Aditya Khosla
Michael S. Bernstein
2
+ Task-Embedded Control Networks for Few-Shot Imitation Learning 2018 Stephen James
Michael Bloesch
Andrew J. Davison
2
+ Learning to Adapt in Dynamic, Real-World Environments Through Meta-Reinforcement Learning 2018 Anusha Nagabandi
Ignasi Clavera
Simin Liu
Ronald S. Fearing
Pieter Abbeel
Sergey Levine
Chelsea Finn
2
+ Meta-Reinforcement Learning of Structured Exploration Strategies 2018 Abhishek Gupta
Russell Mendonca
YuXuan Liu
Pieter Abbeel
Sergey Levine
2
+ Adam: A Method for Stochastic Optimization 2014 Diederik P. Kingma
Jimmy Ba
2
+ One-Shot High-Fidelity Imitation: Training Large-Scale Deep Nets with RL 2018 Tom Le Paine
Sergio Gómez Colmenarejo
Ziyu Wang
Scott Reed
Yusuf Aytar
Tobias Pfaff
Matthew W. Hoffman
Gabriel Barth-Maron
Serkan Cabi
David Budden
2
+ PDF Chat A Tutorial on Thompson Sampling 2018 Daniel Russo
Benjamin Van Roy
Abbas Kazerouni
Ian Osband
Zheng Wen
2
+ Maximum Entropy Deep Inverse Reinforcement Learning 2015 Markus Wulfmeier
Peter Ondrúška
Ingmar Posner
2
+ Meta Reinforcement Learning with Latent Variable Gaussian Processes 2018 Steindór Sæmundsson
Katja Hofmann
Marc Peter Deisenroth
2
+ Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor 2018 Tuomas Haarnoja
Aurick Zhou
Pieter Abbeel
Sergey Levine
1
+ Generative Adversarial Imitation Learning 2016 Jonathan Ho
Stefano Ermon
1
+ Tensor Decompositions and Applications 2009 Tamara G. Kolda
Brett W. Bader
1
+ Grasp Pose Detection in Point Clouds 2017 Andreas ten Pas
Marcus Gualtieri
Kate Saenko
Robert W. Platt
1
+ Meta-SGD: Learning to Learn Quickly for Few-Shot Learning 2017 Zhenguo Li
Fengwei Zhou
Fei Chen
Hang Li
1
+ SMASH: One-Shot Model Architecture Search through HyperNetworks 2017 Andrew Brock
Theodore Lim
Jacob Ritchie
Nick Weston
1
+ Exploring Model-based Planning with Policy Networks 2019 Tingwu Wang
Jimmy Ba
1
+ Meta-Learning with Adaptive Layerwise Metric and Subspace. 2018 Yoonho Lee
Seungjin Choi
1
+ Model-Based Reinforcement Learning for Atari 2019 Łukasz Kaiser
Mohammad Babaeizadeh
Piotr Miłoś
Błażej Osiński
Roy H. Campbell
Konrad Czechowski
Dumitru Erhan
Chelsea Finn
Piotr Kozakowski
Sergey Levine
1
+ On Calibration of Modern Neural Networks 2017 Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
1
+ PDF Chat Supersizing self-supervision: Learning to grasp from 50K tries and 700 robot hours 2016 Lerrel Pinto
Abhinav Gupta
1
+ PDF Chat Gaussian Processes for Data-Efficient Learning in Robotics and Control 2013 Marc Peter Deisenroth
Dieter Fox
Carl Edward Rasmussen
1
+ Selective Classification for Deep Neural Networks 2017 Yonatan Geifman
Ran El‐Yaniv
1
+ How to train your MAML. 2018 Antreas Antoniou
Harrison Edwards
Amos Storkey
1
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
1
+ Meta-Learning with Latent Embedding Optimization 2018 Andrei A. Rusu
Dushyant Rao
Jakub Sygnowski
Oriol Vinyals
Razvan Pascanu
Simon Osindero
Raia Hadsell
1
+ Prototypical Networks for Few-shot Learning 2017 Jake Snell
Kevin Swersky
Richard S. Zemel
1
+ Modular meta-learning 2018 Ferran Alet
Tomás Lozano‐Pérez
Leslie Pack Kaelbling
1
+ AutoAugment: Learning Augmentation Policies from Data 2018 Ekin D. Cubuk
Barret Zoph
Dandelion Mané
Vijay Vasudevan
Quoc V. Le
1
+ Neural Architecture Search: A Survey 2018 Thomas Elsken
Jan Hendrik Metzen
Frank Hutter
1
+ Dex-Net 2.0: Deep Learning to Plan Robust Grasps with Synthetic Point Clouds and Analytic Grasp Metrics 2017 Jeffrey Mahler
Jacky Liang
Sherdil Niyaz
Michael Laskey
Richard Doan
Xinyu Liu
Juan Pablo Aparicio
Ken Goldberg
1
+ Continuous control with deep reinforcement learning 2015 Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
Nicolas Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
1
+ Plan Online, Learn Offline: Efficient Learning and Exploration via Model-Based Control 2018 Kendall Lowrey
Aravind Rajeswaran
Sham M. Kakade
Emanuel Todorov
Igor Mordatch
1
+ Gauge Equivariant Convolutional Networks and the Icosahedral CNN 2019 Taco Cohen
Maurice Weiler
Berkay Kicanaoglu
Max Welling
1
+ PDF Chat Deep learning for detecting robotic grasps 2015 Ian Lenz
Honglak Lee
Ashutosh Saxena
1
+ Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift 2019 Yaniv Ovadia
Emily Fertig
Jie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
1
+ Model-Based Value Estimation for Efficient Model-Free Reinforcement Learning 2018 Vladimir Feinberg
Alvin Wan
Ion Stoica
Michael I. Jordan
Joseph E. Gonzalez
Sergey Levine
1
+ Equivariance Through Parameter-Sharing 2017 Siamak Ravanbakhsh
Jeff Schneider
Barnabás Póczos
1