Zhongyi Pei

Follow

Generating author description...

Common Coauthors
Commonly Cited References
Action Title Year Authors # of times referenced
+ Deep Domain Confusion: Maximizing for Domain Invariance 2014 Eric Tzeng
Judy Hoffman
Ning Zhang
Kate Saenko
Trevor Darrell
2
+ Domain Adaptation: Learning Bounds and Algorithms 2009 Yishay Mansour
Mehryar Mohri
Afshin Rostamizadeh
2
+ Conditional Generative Adversarial Nets 2014 Mehdi Mirza
Simon Osindero
2
+ PDF Chat Representation Learning: A Review and New Perspectives 2013 Yoshua Bengio
Aaron Courville
P. M. Durai Raj Vincent
2
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
2
+ Caffe: Convolutional Architecture for Fast Feature Embedding 2014 Yangqing Jia
Evan Shelhamer
Jeff Donahue
Sergey Karayev
Jonathan Long
Ross Girshick
Sergio Guadarrama
Trevor Darrell
2
+ Natural Language Processing (almost) from Scratch 2011 Ronan Collobert
Jason Weston
Léon Bottou
Michael Karlen
Koray Kavukcuoglu
Pavel P. Kuksa
2
+ Domain Separation Networks 2016 Konstantinos Bousmalis
George Trigeorgis
Nathan Silberman
Dilip Krishnan
Dumitru Erhan
2
+ Mode Regularized Generative Adversarial Networks 2016 Tong Che
Yanran Li
Athul Paul Jacob
Yoshua Bengio
Wenjie Li
2
+ Towards Principled Methods for Training Generative Adversarial Networks 2017 Martín Arjovsky
Léon Bottou
2
+ Deep Transfer Learning with Joint Adaptation Networks 2016 Mingsheng Long
Zhu Han
Jianmin Wang
Michael I. Jordan
2
+ Unrolled Generative Adversarial Networks 2016 Luke Metz
Ben Poole
David Pfau
Jascha Sohl‐Dickstein
1
+ Generative Multi-Adversarial Networks 2016 Ishan Durugkar
Ian Gemp
Sridhar Mahadevan
1
+ How transferable are features in deep neural networks 2014 Jason Yosinski
Jeff Clune
Yoshua Bengio
Hod Lipson
1
+ PDF Chat A Multidisciplinary Survey and Framework for Design and Evaluation of Explainable AI Systems 2021 Sina Mohseni
Niloofar Zarei
Eric D. Ragan
1
+ Unsupervised Domain Adaptation with Residual Transfer Networks 2016 Mingsheng Long
Zhu Han
Jianmin Wang
Michael I. Jordan
1
+ LSDA: Large Scale Detection Through Adaptation 2014 Judy Hoffman
Sergio Guadarrama
Eric Tzeng
Ronghang Hu
Jeff Donahue
Ross Girshick
Trevor Darrell
Kate Saenko
1
+ Learning Transferable Features with Deep Adaptation Networks 2015 Mingsheng Long
Yue Cao
Jianmin Wang
Michael I. Jordan
1
+ ImageNet Large Scale Visual Recognition Challenge 2014 Olga Russakovsky
Jia Deng
Hao Su
Jonathan Krause
Sanjeev Satheesh
Sean Ma
Zhiheng Huang
Andrej Karpathy
Aditya Khosla
Michael S. Bernstein
1
+ PDF Chat Non-functional Requirements for Machine Learning: Understanding Current Use and Challenges in Industry 2021 Khan Mohammad Habibullah
Jennifer Horkoff
1
+ Unrolled Generative Adversarial Networks 2016 Luke Metz
Ben Poole
David Pfau
Jascha Sohl‐Dickstein
1
+ PDF Chat Simultaneous Deep Transfer Across Domains and Tasks 2017 Judy Hoffman
Eric Tzeng
Trevor Darrell
Kate Saenko
1
+ Unsupervised Domain Adaptation by Backpropagation 2014 Yaroslav Ganin
Victor Lempitsky
1
+ DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition 2013 Jeff Donahue
Yangqing Jia
Oriol Vinyals
Judy Hoffman
Ning Zhang
Eric Tzeng
Trevor Darrell
1
+ How transferable are features in deep neural networks? 2014 Jason Yosinski
Jeff Clune
Yoshua Bengio
Hod Lipson
1
+ Wasserstein GAN 2017 Martín Arjovsky
Soumith Chintala
Léon Bottou
1
+ PDF Chat Requirements Engineering Challenges in Building AI-Based Complex Systems 2019 Hrvoje Belani
Marin Vuković
Željka Car
1
+ PDF Chat Requirements Engineering for Machine Learning: Perspectives from Data Scientists 2019 Andreas Vogelsang
Markus Borg
1
+ PDF Chat Informed Machine Learning - A Taxonomy and Survey of Integrating Prior Knowledge into Learning Systems 2021 Laura von Rueden
Sebastian Mayer
Katharina Beckh
Bogdan Georgiev
Sven Giesselbach
Raoul Heese
Birgit Kirsch
Michał Walczak
Julius Pfrommer
Annika Pick
1
+ Integrating Physics-Based Modeling with Machine Learning: A Survey 2020 Jared Willard
Xiaowei Jia
Shaoming Xu
Michael Steinbach
Vipin Kumar
1
+ PDF Chat How do Data Science Workers Collaborate? Roles, Workflows, and Tools 2020 Amy X. Zhang
Michael Müller
Dakuo Wang
1
+ Unsupervised Domain Adaptation by Backpropagation 2014 Yaroslav Ganin
Victor Lempitsky
1
+ PDF Chat ImageNet Large Scale Visual Recognition Challenge 2015 Olga Russakovsky
Jia Deng
Hao Su
Jonathan Krause
Sanjeev Satheesh
Sean Ma
Zhiheng Huang
Andrej Karpathy
Aditya Khosla
Michael S. Bernstein
1
+ PDF Chat Autonomics: In search of a foundation for next-generation autonomous systems 2020 David Harel
Assaf Marron
Joseph Sifakis
1
+ Learning Transferable Features with Deep Adaptation Networks 2015 Mingsheng Long
Yue Cao
Jianmin Wang
Michael I. Jordan
1
+ PDF Chat Towards CRISP-ML(Q): A Machine Learning Process Model with Quality Assurance Methodology 2021 Stefan Studer
Thanh Binh Bui
Christian Drescher
Alexander Hanuschkin
Ludwig Winkler
Steven Peters
Klaus‐Robert Müller
1
+ PDF Chat A Survey on Bias and Fairness in Machine Learning 2021 Ninareh Mehrabi
Fred Morstatter
Nripsuta Ani Saxena
Kristina Lerman
Aram Galstyan
1
+ A kernel two-sample test 2012 Arthur Gretton
Karsten Borgwardt
Malte J. Rasch
Bernhard Schölkopf
Alexander J. Smola
1
+ PDF Chat Simultaneous Deep Transfer Across Domains and Tasks 2015 Eric Tzeng
Judy Hoffman
Trevor Darrell
Kate Saenko
1
+ Unsupervised Domain Adaptation with Residual Transfer Networks 2016 Mingsheng Long
Zhu Han
Jianmin Wang
Michael I. Jordan
1